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Introduction 
This study examines LIDAR (light detection and ranging) based vehicle classification and classification 

performance monitoring. First, we develop a portable LIDAR based vehicle classification system that can 

be rapidly deployed, and then we use the LIDAR based system for automated validation of conventional 

vehicle classification stations.  

We develop the LIDAR based classification system with the sensors mounted in a side-fire configuration 

next to the road. The first step is to distinguish between vehicle returns and non-vehicle returns. The 

algorithm then clusters the vehicle returns into individual vehicles. The algorithm examines each vehicle 

cluster to check if there is any evidence of partial occlusion from another vehicle. Several measurements 

are taken from each non-occluded cluster to classify the vehicle into one of six classes: motorcycle, 

passenger vehicle, passenger vehicle pulling a trailer, single-unit truck, single-unit truck pulling a trailer, 

and multi-unit truck. The algorithm was evaluated at six different locations under various traffic 

conditions. Compared to concurrent video ground truth data for over 27,000 vehicles on a per-vehicle 

basis, 11% of the vehicles are suspected of being partially occluded. The algorithm correctly classified 

over 99.5% of the remaining, non-occluded vehicles. This research also uncovered emerging challenges 

that likely apply to most classification systems, e.g., differentiating commuter cars from motorcycles. 

Occlusions are inevitable in this proof of concept study since the LIDAR sensors were mounted roughly 6 

ft above the road, well below the tops of many vehicles. Ultimately we envision using a combination of a 

higher vantage point (in future work), and shape information (begun herein) to greatly reduce the 

impacts of occlusions.  

Even with the impacts of occlusions, the LIDAR system is a valuable tool. We use the tools discussed 

above to automate the process of evaluating the performance of conventional vehicle classification 

stations. There are many classification technologies, each with its own strengths and weaknesses, but all 

of these systems depend on accurate calibration and validation to yield meaningful results. Such 

performance monitoring has been prohibitively labor intensive, prone to human error, and conventional 

aggregation periods are too coarse, allowing overcounting errors to cancel undercounting errors. This 

work develops a classification performance monitoring system to allow operating agencies to rapidly 



 

NEXTRANS Project No 0033Y02 Technical Summary - Page 2 

assess the health of their classification stations on a per vehicle basis. We eliminate most of the labor 

demands and instead, deploy a portable non-intrusive vehicle classification system (PNVCS) to classify 

vehicles, concurrent with an existing classification station. Our system uses the LIDAR based PNVCS from 

above, but our approach is compatible with many other portable vehicle classification systems. Our van-

mounted system does not require any calibration in the field. For longer-term deployments we envision 

a dedicated trailer that could be parked alongside the road. 

To prevent classification errors from canceling one another in aggregate, we evaluate performance on a 

per-vehicle record basis. The approach requires several intermediate steps, developed herein, including 

synchronizing the independent clocks and matching observations of a given vehicle between the two 

classification systems. These algorithms automatically compare the vehicle classification between the 

existing classification station and the PNVCS for each vehicle. If the two systems agree, the given vehicle 

is automatically taken as a success. A human only looks at a given vehicle when the two systems 

disagree, and for this task we have developed tools to semi-automate the manual validation process, 

greatly increasing the efficiency and accuracy of the human user (typically on the order of 4 sec per 

vehicle- including seek time and loading time, translating to a few minutes to validate all of the 

exceptions from all lanes over an hour of data). The automated process does the bulk of the work, less 

than 8% of the vehicles required manual intervention. The methodology is applied to several permanent 

and temporary vehicle classification stations to evaluate axle and length-based classification. The 

evaluation datasets include over 21,000 vehicles. This evaluation also revealed a chronic problem 

detecting motorcycles at two permanent classification stations studied. While the LIDAR system 

detected 15 passing motorcycles, the classification stations correctly classified only one of them, and 

missed five altogether. 

 

Findings 
1) By measuring height, shape and length, the LIDAR based system was able to distinguish between 

vehicle classes that challege other classification technologies. The overall performance was very 

good. 

2) The LIDAR based PNVCS worked well and was able to catch all of the chronic errors exhibited by the 

classification stations under review, even across four lanes of traffic. 

3) The PNVCS validation tools allowed for rapid assessment of the study locations, and caught several 

previously unknown detection errors.  

4) At the classification stations overall performance was good, with only 3%-4% of the vehicles being 

misclassified; however, the relative impacts were much larger on the trucks, e.g., only 60% of the 

single unit truck/bus (SUT) - axle class 4-7 - were correctly classified as SUT by the existing axle-

based classification decision tree. 

5) This work also uncovered an emerging challenge facing most vehicle classification technologies: 

separating commuter cars from motorcycles. The two groups have similar lengths, axle spacing and 
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height (akin to the SUT problem above). With increased interest in correctly classifying motorcycles 

combined with more commuter cars on the road there is a need to devise a means to separate the 

two types of vehicles. 

6) The two permanent classification stations evaluated with the LIDAR PNVCS exhibited chronic 

problems detecting motorcycles. While the LIDAR system detected 15 passing motorcycles, the 

classification stations correctly classified just one of them, and missed five altogether. 

 

Recommendations 
1) The overlapping range of axle spacings and vehicle lengths across different classes underscores the 

importance of extensive calibrtation, as enabled by our LIDAR based PNVCS, e.g., one cannot 

blindly use an axle classification station to calibrate the boundary between passenger vehicles (PV) 

and SUT for length-based classification stations, otherwise, the unavoidable errors in the axle 

classification will be amplified in the length-based classification scheme. 

2) Similarly, all subsequent uses of the classification data (e.g., planning and measuring freight flows) 

must accommodate this unavoidable blurring of SUT with PV. 

3) Recognizing the difficulty in distinguishing pairs of vehicle classes with the existing detector 

infrastructure (e.g., commuter cars and motorcycles, short SUT and PV), there may be a need to 

create buffer classes to impart greater confidence in the reported classifications, e.g., adding a new 

"class 3 or class 5" bin to the axle-based decision tree that takes the upper portion of class 3 and 

lower portion of class 5 axle spacings. Thus confining the uncertainty to a much smaller number of 

vehicles and ensuring much greater confidence that anything that is classified as "strictly class 5" is 

indeed class 5. 

4) As this research has shown, there is wide variance in performance from one station to the next and 

these errors tend to have a higher frequency among the truck classes, particularly the SUT. Since 

these errors are a function of the specific station, there would be benefit if operating agencies 

were to leverage the LIDAR based PNVCS system developed in this research to evaluate the 

performance of many other classification stations. Thereby catching systematic errors that bias 

classification performance at the given station. 

5) The LIDAR based PNVCS offers a means to rapidly evaluate refinements in the conventional 

classification scheme, e.g., evaluating solutions to address the large percentage of motorcycles that 

were misclassified or passed completely undetected in this study. 
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1-1 

1 INTRODUCTION 
This study examines LIDAR (light detection and ranging) based vehicle classification and classification 

performance monitoring. First, we develop a portable LIDAR based vehicle classification system that can be rapidly 
deployed, and then we use the LIDAR based system for automated validation of conventional vehicle classification 
stations. Each component is discussed in a separate chapter, as follows. 

In Chapter 2 we develop the LIDAR based classification system with the sensors mounted in a side-fire 
configuration next to the road. The first step is to distinguish between vehicle returns and non-vehicle returns. The 
algorithm then clusters the vehicle returns into individual vehicles. The algorithm examines each vehicle cluster to 
check if there is any evidence of partial occlusion from another vehicle. Several measurements are taken from each 
non-occluded cluster to classify the vehicle into one of six classes: motorcycle, passenger vehicle, passenger vehicle 
pulling a trailer, single-unit truck, single-unit truck pulling a trailer, and multi-unit truck. The algorithm was 
evaluated at six different locations under various traffic conditions (details of the various test sites can be found in 
Appendix A). Compared to concurrent video ground truth data for over 27,000 vehicles on a per-vehicle basis, 11% 
of the vehicles are suspected of being partially occluded. The algorithm correctly classified over 99.5% of the 
remaining, non-occluded vehicles. This research also uncovered emerging challenges that likely apply to most 
classification systems, e.g., differentiating commuter cars from motorcycles. 

Occlusions are inevitable in this proof of concept study since the LIDAR sensors were mounted roughly 6 
ft above the road, well below the tops of many vehicles. Ultimately we envision using a combination of a higher 
vantage point (in future work), and shape information (begun herein) to greatly reduce the impacts of occlusions.  

Even with the impacts of occlusions, the LIDAR system is a valuable tool. In Chapter 3, we use the tools 
from Chapter 2 to automate the process of evaluating the performance of conventional vehicle classification stations. 
There are many classification technologies, each with its own strengths and weaknesses, but all of these systems 
depend on accurate calibration and validation to yield meaningful results. Such performance monitoring has been 
prohibitively labor intensive, prone to human error, and conventional aggregation periods are too coarse, allowing 
overcounting errors to cancel undercounting errors. This work develops a classification performance monitoring 
system to allow operating agencies to rapidly assess the health of their classification stations on a per vehicle basis. 
We eliminate most of the labor demands and instead, deploy a portable non-intrusive vehicle classification system 
(PNVCS) to classify vehicles, concurrent with an existing classification station. Our system uses the LIDAR based 
PNVCS from Chapter 2, but our approach is compatible with many other portable vehicle classification systems. 
Our van-mounted system does not require any calibration in the field. For longer-term deployments we envision a 
dedicated trailer that could be parked alongside the road. 

To prevent classification errors from canceling one another in aggregate, we evaluate performance on a 
per-vehicle record basis. The approach requires several intermediate steps, developed herein, including 
synchronizing the independent clocks and matching observations of a given vehicle between the two classification 
systems. These algorithms automatically compare the vehicle classification between the existing classification 
station and the PNVCS for each vehicle. If the two systems agree, the given vehicle is automatically taken as a 
success. A human only looks at a given vehicle when the two systems disagree, and for this task we have developed 
tools to semi-automate the manual validation process, greatly increasing the efficiency and accuracy of the human 
user (typically on the order of 4 sec per vehicle- including seek time and loading time, translating to a few minutes 
to validate all of the exceptions from all lanes over an hour of data). The automated process does the bulk of the 
work, less than 8% of the vehicles required manual intervention. The methodology is applied to several permanent 
and temporary vehicle classification stations (again, as detailed in Appendix A) to evaluate axle and length-based 
classification. The evaluation datasets include over 21,000 vehicles. This evaluation also revealed a chronic problem 
detecting motorcycles at two permanent classification stations studied. While the LIDAR system detected 15 passing 
motorcycles, the classification stations correctly classified only one of them, and missed five altogether. 

 
 



 

2-1 

2 SIDE-FIRE LIDAR BASED VEHICLE CLASSIFICATION 

2.1 Introduction 
Vehicle classification data are used in many transportation applications, including: pavement design, 

environmental impact studies, traffic control, and traffic safety [1]. There are several classification methods, 
including: axle-based (e.g., pneumatic tube and piezoelectric detectors), vehicle length-based (e.g., dual loop and 
some wayside microwave detectors), as well as emerging machine vision based detection. As noted by the Traffic 
Monitoring Guide [1], each sensor technology has its own strengths and weaknesses regarding costs, accuracy, 
performance, and ease of use. 

In the present study we add another technology to the mix and develop a vehicle classification algorithm 
for LIDAR (Light detection and ranging) sensors mounted in a side-fire configuration. Our prototype system 
consists of two LIDAR sensors mounted on the driver's side of a probe vehicle parked alongside the roadway. Each 
LIDAR scans a vertical plane across the roadway, providing a rich view of the passing vehicles. In practice, the 
LIDAR sensors could be mounted on a temporary deployment platform like this system, or permanently mounted on 
a pole adjacent to the roadway. 

To classify vehicles, first we segment them from the background, and then we look for possible occlusions 
using algorithms developed herein. Next, we measure several features of size and shape for each vehicle and these 
features are subsequently used to classify the vehicle into one of six categories. The classification algorithm is 
evaluated by comparing the individual vehicle results against concurrent video. Occlusions are inevitable in this 
proof of concept study since the LIDAR sensors were mounted roughly 6 ft above the road, well below the tops of 
many vehicles. The present work focuses primarily on the non-occluded vehicles. Ultimately we envision using a 
combination of a higher vantage point in future work (similar to wayside microwave detectors), and shape 
information (begun herein) to greatly reduce the impacts of occlusions. 

LIDAR technology has been applied in various transportation applications, such as highway safety [2-3] 
and highway design [4-5]. There have been a few demonstrations of LIDAR or related optical range finding 
technologies to monitor traffic and sometimes classify the vehicles. The most notable example being the Schwartz 
Autosense [6], which consisted of a sensor mounted over the lane of travel; though this basic approach pre-dates the 
Autosense system [7]. While the overhead view eliminates occlusions, the need to mount the sensor over the 
roadway makes deployment more difficult. Others have contemplated using airborne LIDAR platforms for traffic 
monitoring [8-9]. For example, [9] collected LIDAR imagery data over transportation corridors, segmented 
individual vehicles from the road surface, and then extracted six parameters of vehicle shape and size for each 
vehicle. They classified vehicles in three categories (passenger vehicles, multi-purpose vehicles, and trucks) using 
principle component analysis. Finally, our group has also contemplated the use of LIDAR to classify vehicles from a 
moving platform [10-11]. 

The remainder of this chapter is organized as follows. First the process of collecting the LIDAR data and 
the procedure of segmenting the vehicles from the background are presented. Next, the LIDAR based vehicle 
classification algorithm is developed. Third, the algorithm is evaluated on a per-vehicle-basis against concurrent 
video ground truth from field data at six directional locations, exhibiting various traffic conditions, distance between 
LIDAR and target vehicles, and road type (freeway and arterial road). The evaluation dataset includes over 25,000 
vehicles (23,000 non-occluded). Then, the chapter closes with conclusions. 

2.2 LIDAR Measurements and Vehicle Detection  
Figure 2-1(b) shows an overhead schematic of the prototype deployment. The two LIDAR sensors are each 

mounted at a height of about 6.7 ft above ground and they are 4.6 ft apart from one another. Each LIDAR sensor 
scans a vertical plane across the roadway at roughly 37 Hz. Each scan sweeps 180°, returning the distance to the 
nearest object (if any) at 0.5° increments with a ranging resolution of 0.1 inch and a maximum range of 262 ft. So 
each scan returns 361 samples in polar coordinates (range and angle) relative to the LIDAR sensor and these data are 
transformed into a Cartesian coordinate system (lateral distance and relative height) for analysis. 

Using these LIDAR data, vehicle segmentation is split into two steps. First we distinguish between vehicle 
returns and non-vehicle returns (e.g., pavement, foliage, barriers, etc.). Then we cluster the vehicle returns into 
discrete vehicles. 
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Figure 2-1, A hypothetical example of a vehicle passing by the two side-fire LIDAR sensors: (a) in 

time-space place; (b) a top-down schematic of the scene; and the corresponding returns 
from the vehicle from (c) the rear LIDAR sensor and (d) the front LIDAR sensor. 

 
 (a) (b) 

   
Figure 2-2, (a) the LIDAR data collection on I-270 southbound, on the west side of Columbus, Ohio; 

and (b) the corresponding background curve extracted from the data. 
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To segment the vehicle and non-vehicle returns we adapt background subtraction techniques from 
conventional image processing. The LIDAR are fixed, so when no vehicles are present they will return nearly 
identical scans of the background. Thus, the background's range at a given angle is (roughly) constant and over time 
the background returns are the dominant range reported at each angle. Formalizing this concept to extract the 
background from the LIDAR data, we set the background equal to the median range at each angle as observed over 
an extended time period with largely free flowing traffic. Whenever a vehicle is present, the vehicle's returns can 
only be at a range that is closer than the background range for the given angle. So in the absence of free flowing 
traffic, one could instead take the distribution of observed ranges at a given angle and set the background equal to 
the furthest mode of the distribution. 

Figure 2-2(a) shows the data collection on I-270 southbound, on the west side of Columbus, Ohio. The 
probe vehicle was parked just off of the right hand shoulder to collect LIDAR data. Figure 2-2(b) shows the 
corresponding background that was extracted from the LIDAR data. Because the van would occasionally roll a small 
amount about its central axis as personnel entered or exited the vehicle during the data collection, returns from the 
background did not always fall on the measured background curve. All returns falling beyond the background curve 
as well as any returns that were within an inch above the background curve were considered non-vehicle returns and 
excluded from further analysis. However, if the low-lying returns prove critical to a subsequent application (e.g., to 
count axles with a higher scan rate), one could estimate the LIDAR's instantaneous angle relative to the shoulders 
(0-11.8 ft, and 47.2-65.6 ft in Figure 2-2(b)) and normalize this angle across scans. 

Only vehicle returns should remain after removing the background, however, these returns still need to be 
clustered into individual vehicles and we take the following steps to do so. First we establish the lane boundaries by 
looking at the distribution of the lateral distance across the vehicle returns. We expect to see one distinct mode per 
travel lane, corresponding to the near side of the vehicles when traveling in the given lane since the vertical edges on 
the vehicles will generally yield many returns at the same lateral distance; though, there will be other returns in the 
distribution from horizontal vehicle surfaces, vehicles changing lanes, and so forth. Provided the LIDAR sensors are 
not moved, this step only needs to be done once, using a few minutes of data.  

Second, in each scan we segment the LIDAR returns by lane using the lane boundaries from the previous 
step. As long as a vehicle travels within a lane, all of the returns from that vehicle will fall between the respective 
lane boundaries in the given scan. In most cases even a single return in the lane will be taken as that lane being 
occupied in that scan. However, in the relatively rare cases when a vehicle changes lanes as it passes the LIDAR, 
that vehicle's returns may fall into two adjacent lanes (we saw this event occur 253 times out of 27,450 vehicles). To 
find the cases when a single vehicle is seen in adjacent lanes, we explicitly look for concurrent returns in 
neighboring lanes. When this occurs, we take the mode of lateral distance in the near lane and the far lane, 
respectively. Again, the nearside of a vehicle is characterized by a large number of returns at a given lateral distance, 
i.e., the mode lateral distance within the lane. If in the given scan the difference between the modes in successive 
lanes is less than the maximum feasible vehicle width (set to 8.5 ft, the maximum width of commercial motor 
vehicles [12]), the vehicle returns in the adjacent lanes are assumed to come from a single vehicle and are grouped 
together in the lane corresponding to the median lateral distance among the set of returns in question. Otherwise, the 
two modes are too far apart to come from a single vehicle and the groups are kept separate. Obviously this approach 
assumes that at most one vehicle can occupy a lane in a given scan; although we know that it is not always the case, 
e.g., when two motorcycles pass side by side within a lane, we have yet to observe any such exceptions in the 
LIDAR data so addressing these exceptions is left to future research.  

Third, taking the temporal sequence by lane, the returns are clustered into vehicles. After each scan is 
processed, whenever a given lane is occupied, if there is not already an open vehicle cluster in that lane then a new 
vehicle cluster is begun with the corresponding returns; otherwise, the corresponding returns are added to the open 
vehicle cluster in that lane. On the other hand, if there is an open vehicle cluster and the lane has not been occupied 
for at least 1/4 sec (roughly 9 scans) then the open vehicle cluster is closed. To be retained, a closed vehicle cluster 
must span at least two scans and at least two of the scans must have different heights, otherwise, the vehicle cluster 
is discarded. Because the returns in a scan are grouped by lane before the clustering step and we make the above 
correction for vehicles changing lanes, it is theoretically possible for two neighboring vehicles to be erroneously 
clustered together. Though we have not seen this problem occur, to safeguard against it, if the net width of a closed 
cluster is greater than the maximum feasible vehicle width then the cluster is split in two, by lane. On the other hand, 
it is possible for a vehicle changing lanes to be assigned to different lanes at different time steps, resulting in 
separate clusters in each lane. To catch these breakups, when a cluster ends in one lane, we check the next scan to 
see if a new cluster begins in an adjacent lane a small distance away, i.e., if the difference between the mode lateral 
distance is less than 3.5 ft, the two clusters are merged together and assigned to the lane with the larger cluster. The 
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segmentation and clustering steps are repeated for each lane across each successive LIDAR scan until all of the 
vehicle returns have been clustered into discrete vehicles.  

2.2.1 Occlusion Reasoning 
A key step in classifying a given vehicle is determining whether the entire vehicle was seen or if there was 

evidence of a partial occlusion. Table 2-1 shows that the latter case arose for about 12% of the vehicles observed on 
the multilane facilities. The frequency is so small because the spacing between vehicles is typically much larger than 
one might think, e.g., according to the HCM [13], LOS F on a freeway begins at 46 passenger cars per mile per lane 
or 117 ft per passenger car and passenger cars are generally on the order of 10-20 ft long. In any event, partially 
occluded vehicles are likely to be misclassified in our algorithm if the occlusion is not identified and handled 
separately from the non-occluded vehicles. Of course from the LIDAR data stream we cannot detect completely 
occluded vehicles, though we found these errors occurred between 3-6% in the three multilane datasets that had an 
independent detector to monitor occluded lanes (I-71 and I-270 in Table 2-1), and as one might expect, most of these 
occluded vehicles were passenger vehicles. A higher vantage point or using a second set of LIDAR to also monitor 
from the median of the roadway should reduce the frequency of completely occluded vehicles. 

For any given vehicle cluster we suspect a partial occlusion occurred unless we see at least one non-vehicle 
return on all sides of the cluster (both temporally and spatially). To automatically detect partially occluded vehicles, 
first we check the vehicles seen in each scan of the LIDAR. If we cannot see the background curve between a given 
pair of vehicles the further vehicle is suspected of being partially occluded by the closer vehicle. Second, we check 
successive scans, if one vehicle is seen at a given angle in scan i, and a different vehicle is seen at the same angle in 
scan i+1, whichever vehicle cluster is further away is considered to be partially occluded. 

2.3 LIDAR Based Vehicle Classification Algorithm 
In this section we develop an algorithm to classify the vehicle clusters extracted from the LIDAR data in 

the previous section. The core algorithm focuses on the non-occluded vehicles and sorts them into six vehicle 
classes: motorcycle (MC), passenger vehicle (PV), PV pulling a trailer (PVPT), single-unit truck/bus (SUT), SUT 
pulling a trailer (SUTPT), and multi-unit truck (MUT). These classes are a refinement of commonly used length-
based classes (as noted in [1], a user might not need the full 13 axle-based classes and three or four simple 
categories may suffice). After classifying the non-occluded vehicles we separately handle the partially occluded 
vehicles, taking care to address the uncertainty about what went unobserved.  

We derived the vehicle classification algorithm using a ground truth development dataset that consists of 24 
min of free flow data collected across four lanes on I-71 southbound in Columbus, Ohio, between 11th Ave and 17th 
Ave on July 9, 2009. There were 1,502 non-occluded vehicles in this dataset and all of the vehicle classifications 
were manually verified from the video ground truth data. The two primary vehicle features used by the classification 
algorithm are length and height measured from the individual vehicle clusters, as shown in Figure 2-3(a). Compared 
to using length alone, as would be done from loop detectors (see, e.g., [14]), vehicle height helps separate different 
vehicle classes (e.g., although the SUT and PV length ranges overlap, the vehicle height successfully separates these 
two groups). However, the boundaries of some classes still overlap in the length-height plane. To segregate these 
vehicles we calculate up to six additional measurements of the vehicle's shape (for a total of eight shape 
measurements), as enumerated below and explained in the following subsections. 

• Vehicle length (VL)  
• Vehicle height (VH) 
• Detection of middle drop (DMD) 
• Vehicle height at middle drop (VHMD) 
• Front vehicle height (FVH) 
• Front vehicle length (FVL) 
• Rear vehicle height (RVH) 
• Rear vehicle length (RVL) 
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Table 2-1, Summary of LIDAR data collected to evaluate the algorithm and the performance of the 
algorithm by each dataset. 

Data 
type 

Road 
type 

Location 
(direction) 

 
Num- 

ber 
of  

lanes 

 
Date 

 

Dura- 
tion 
(hr: 
min) 

Distance 
between 
LIDAR 

sensor and 
the nearest 
travelled  
lane (ft) 

Average 
of the 

LIDAR 
speeds  

over the 
duration 
(mph) 

Number 
of 

vehicles 
seen 
by  

LIDAR 

Number 
of 

partially 
occluded 
vehicles 

Number 
of 

totally 
occluded 
vehicles 

Performance of 
the algorithm 

%  
errors 

Time 
period 

(Start time ~ 
End time) 

Success Errors 

Develop- 
ment 

Free- 
way 

I-71 
(SB) 4 July 9, 2009 18:09 ~ 18:33 0:24 58 63 1,813 311 65 1,494 8 0.5% 

Evalua- 
tion 

Free- 
way 

I-71  
(SB) 4 Nov 19, 2009 07:41 ~ 08:09 0:28 58 47 2,619 591 145 2,021 7 0.3% 

I-270  
(SB) 3 Nov 2, 2010 09:29 ~ 14:29 5:00 15 65 13,397 1,376 422 11,934 87 0.7% 

SR-315  
(NB) 2 Aug 12, 2010 14:57 ~ 17:57 3:00 2 41 6,900 660 n/a 6,230 10 0.2% 

Subtotal of Evaluation  
Freeway - 8:28 - - 22,916 2,627 567 20,185 104 0.5% 

Arterial  
Rd. 

Dublin Rd  
(SB) 1 Oct 28, 2010 07:32 ~ 08:57 

14:30 ~ 15:55 2:50 2 36 1,344 - - 1,337 7 0.5% 

Wilson Rd 
(NB) 1 Oct 28, 2010 09:08 ~ 09:56 

16:02 ~ 16:54 1:40 2 36 666 - - 664 2 0.3% 

Wilson Rd  
(SB) 1 Oct 28, 2010 10:18 ~ 10:58 

17:00 ~ 18:00 1:40 2 38 711 - - 710 1 0.1% 

Subtotal of Arterial Rd. - 6:10 - - 2,721 - - 2,711 10 0.4% 

Evaluation data total - 14:38 - - 25,637 2,627 567 22,896 114 0.5% 

Overall total - 15:02 - - 27,450 2,938 632 24,390 122 0.5% 

 

 
 

   
Figure 2-3, (a) A scatter plot of vehicle height and vehicle length of 1,502 non-occluded vehicles from 

the development dataset; and (b) the cumulative distribution of DMD for these vehicles. 
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2.3.1 Vehicle Length (VL) and Vehicle Height (VH) 
The two side LIDAR sensors are mounted in a “speed-trap” configuration with 4.6 ft spacing. Any moving 

target will appear at different times in the two views, thereby allowing for speed measurement. Figure 2-1(a) shows 
a hypothetical example of the time-space diagram as a vehicle passes by the two LIDAR sensors and Figure 2-1(b) 
shows the corresponding schematic on the same distance scale. In this study a vehicle passes the rear LIDAR sensor 
first and then the front LIDAR sensor. Figure 2-1(c) and (d) show the vehicle returns from each of the two LIDAR 
sensors as the vehicle passes, where FT and LT respectively denote the first and last time samples in which the 
vehicle was scanned by the given LIDAR (subscript "r" for rear and "f" for front). OnTf and OnTr indicate the 
duration of time that a vehicle is scanned by the given LIDAR sensor, i.e., the on-time, where OnTx = LTx - FTx, and 
x is either “r” or “f”. Meanwhile, the traversal time is defined as the difference between the first scan time at the two 
sensors, i.e., TTFT = FTf – FTr, or the last scan time, i.e., TTLT = LTf – LTr. Speed is calculated via Equation (2.1) 
from the LIDAR spacing, D, and the traversal time. Vehicle length (VL) is calculated from the mean of VFT and VLT, 
multiplied by OnTr (we arbitrarily select the rear LIDAR on-time in this study), yielding Equation (2.2).1 Finally, 
vehicle height (VH) is directly measured from the difference of the highest relative height and the lowest relative 
height across all of the returns in the given vehicle cluster from the rear LIDAR, yielding Equation (2.3). By using 
the difference in cluster heights, this step accounts for the fact that the road cross-section is not flat, each lane may 
be at a different height relative to the LIDAR sensor. 

LT
LT

FT
FT TT

DV,
TT
DV ==

 (2.1) 

rLTFT OnT)V,V(meanVL ×=  (2.2) 

cluster)t(h],LT,FT[t,))t(hmin())t(hmax(VH rr ∈∀∈∀−=   (2.3) 

where h(t) is height of a LIDAR return in ft relative to the height of the LIDAR sensor at time t. 
Figure 2-3(a) shows a scatter plot of vehicle height versus vehicle length for the 1,502 non-occluded 

vehicles from the development dataset sorted by the six vehicle classes. The VH for almost all of the MC, PV and 
PVPT are below 8 ft, while VH for almost all of the SUT, SUTPT, and MUT are above 8 ft. As will be discussed 
shortly, the height of the trailer (or its load) is sometimes the tallest point on a PVPT or SUTPT and thus is reflected 
in VH for that vehicle. The observed VL are distributed between 5 ft and 89 ft, with a clear but overlapping 
progression from MC to PV to PVPT, and similarly from SUT to SUTPT to MUT. Based on this plot, we select VL 
= 7.5 ft as the dividing line between MC and PV. To segregate the remaining classes, we look for a characteristic 
"gap" before the start of a trailer (PVPT, SUTPT, and MUT) as follows. 

2.3.2 Detection of a Middle Drop in a Vehicle (DMD) 
The vertically scanning LIDAR captures the profile shape of the passing vehicles. This profile is useful to 

distinguish between vehicle classes with overlapping VL and VH ranges, e.g., SUT and MUT. For vehicles in these 
ranges, we look for the presence of a gap that is indicative of the start of a trailer, as manifest as one or more scans 
with a "drop" in the number of returns somewhere in the middle of the vehicle cluster. To determine whether a 
vehicle has such a middle drop, we first tally the number of LIDAR returns, nLR, as a function of each scan (i.e., 
time step) that the vehicle cluster was seen, yielding nLR(t). For example, Figure 2-4(a) shows the image of a 
pickup truck pulling a trailer (an example of PVPT) as it passes by the LIDAR sensors while Figure 2-4(b) shows 
the corresponding LIDAR returns from the vehicle cluster. Figure 2-4(c) shows the nLR(t) curve for the vehicle 
cluster. The curve does a good job highlighting the point where the trailer is connected to the pickup truck via the 
low nLR(t). Note that we deliberately use nLR(t) rather than the height of the vehicle because there are some trailers 
that have a return near the top of the gap even though most of the gap is open (e.g., tree trimming trucks). 

 
 
 
 
 

                                                             
1 Like most conventional vehicle classification techniques, this equation implicitly assumes the vehicle is travelling fast enough 
for acceleration to be negligible, which can be explicitly verified from Equation (2.1). 
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Figure 2-4, (a) A pickup truck pulling a trailer; (b) the corresponding vehicle cluster of returns and the 
various measurements used for vehicle classification; and (c) the number of returns by 
scan, capturing the vehicle shape. Note that time in Figure 2-4(c) is increasing to the left in 
this plot because the front of the vehicle is seen first and the vehicle orientation is presented 
consistent with the rest of the figure. 
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Formalizing the process, once the nLR(t) curve is obtained, the set of local minimum points on the curve 
are considered as potential locations of a middle drop in the vehicle's shape, where nLR(t*

i) denotes the i-th minima. 
Since the middle drop should correspond to relatively few LIDAR returns in the given scan (but not necessarily zero 
due to the connecting link, e.g., the hitch in Figure 2-4(a)), we assume that nLR at a middle drop must be less than 
the average of nLR(t) for the cluster across all times, nLR . So, we ignore i-th local minimum if it is greater than 
nLR . Formalizing this process, a given scan is considered a possible middle drop if it satisfies all of the conditions 
in Equation (2.4). 

nLR)t(nLR

)1t(nLR)t(nLR

)1t(nLR)t(nLR

*
i

*
i

*
i

*
i

*
i

<

+<

−<

 (2.4) 

For each minima at t*
i, we take the difference of nLR(t) and nLR(t*

i) over all times, ( )rr LT,FTt∈ , 
denoted Δn(t, t*

i). We find max(Δn(t, t*
i)) over the α ft ahead of the scan at t*

i (α = 4 ft in this study), add it to 
max(Δn(t, t*

i)) for α ft behind the scan and divide the sum by nLR(t*
i), yielding the Sum of Relative Difference 

(SRD) via Equation (2.5) at each t*
i, i.e., SRD(t*

i). The use of distance rather than time is to make the algorithm 
robust to slow moving vehicles. Next we select the max SRD(t*

i) and call this value the Detection of Middle Drop 
(DMD) indicator, as expressed via Equation (2.6), and set t* equal to the corresponding t*

i. Figure 2-3(b) shows the 
cumulative distribution function of DMD for the 1,502 non-occluded vehicles by vehicle class in the development 
dataset. As expected PVPT, SUTPT and MUT have a wider range of DMD than MC, PV, and SUT. The latter three 
classes usually present zero DMD, indicative of a vehicle without a middle drop. 
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Based on the distributions in Figure 2-3(b), if DMD < 1, the vehicle is presumed to be a single unit vehicle 
that is not pulling a trailer. Only 1 vehicle out of 16 vehicles pulling a trailer had DMD < 1 (a PVPT with zero 
DMD), or 6%. In addition, 40 out of 48 MUT (83%) had DMD > 1. Figure 2-3(b) also shows that 6% of PV and 
15% of SUT had DMD > 1. From the development dataset, most of the vehicles with DMD < 1 can be correctly 
classified based on VL and VH. Correctly classifying the vehicles with DMD > 1 is the topic of the next section. 

2.3.3 Additional Measurements of a Vehicle with Middle Drop 
To correctly classify the vehicle clusters where DMD > 1, we segment a vehicle with middle drop into the 

front part of the vehicle (from the front bumper to the middle drop) and rear part of the vehicle (from the middle 
drop to the rear bumper). We then calculate the length of the front (FVL), height of the front (FVH), length of the 
rear (RVL), height of the rear (RVH), and the height of the vehicle at the middle drop (VHMD), as illustrated in 
Figure 2-4(b). Note that VH of a vehicle with middle drop corresponds to the maximum of FVH and RVH.  

Vehicle Height at Middle Drop (VHMD) 
The VHMD due to the hitch in PVPT or SUTPT should usually be lower than the VHMD due to the rear 

portion of a semi-trailer tractor in a MUT. We set a threshold height of the connection to be 2 ft. If VHMD is lower 
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than this threshold the vehicle will be classified as either PVPT or SUTPT (depending on the FVL, discussed 
below). Otherwise, we need to check the other measurements to classify the vehicle. The VHMD is calculated via 
Equation (2.7) applied to the returns in the vehicle cluster. 

]LT,FT[t,))t(hmin())t(hmax(VHMD rr
* ∈∀−=  (2.7) 

Front Vehicle Height (FVH) and Front Vehicle Length (FVL) 
The front part of a vehicle cluster with a true middle drop is either a PV, SUT, or the tractor of a MUT. As 

was shown in Figure 2-3(a), VH of SUT and MUT is usually higher than 8 ft, while VH of PV is usually lower than 
8 ft. So we use FVH calculated via Equation (2.8) to capture height of the front portion of the cluster and if the 
height is below 8 ft, the vehicle is classified as PVPT. Otherwise, we need to check the other measurements to 
classify the vehicle. 

 ]t,FT[t)),t(hmin())t(hmax(FVH *
r∈∀−=  (2.8) 

In the case of PVPT or SUTPT the FVL calculated via Equation (2.9) is the VL of the PV or SUT portion 
of the cluster. From the development dataset we found the minimum length of the PV portion of the PVPT is above 
15 ft. If the FVL is below 15 ft, we conclude that the middle drop is not due to a trailer and the vehicle is a single 
unit, PV or SUT. 

)FTt(VFVL r
* −×=  (2.9) 

Rear Vehicle Height (RVH) and Rear Vehicle Length (RVL) 
The rear part of a vehicle with a true middle drop is trailer in a PVPT, SUTPT or MUT. If the RVH 

calculated via Equation (2.10) is sufficiently low (below 2.4 ft in the algorithm based on the development dataset), it 
is considered to be an empty flatbed trailer behind a PV or SUT and the complete cluster will be classified as either 
PVPT or SUTPT depending on the other measurements. If the RVH is sufficiently high (above 12 ft in the algorithm 
based on the development dataset), it is considered to be a semi-trailer and the complete cluster will be classified as 
a MUT. Otherwise, we need to check the other measurements to classify the vehicle. The trailer length is captured 
by RVL, Equation (2.11). If RVL is below 28 ft, we assume this trailer cannot come from a semi-trailer truck. 

]LT,t[t,))t(hmin())t(hmax(RVH r
*∈∀−=  (2.10) 

)tLT(VRVL *
r −×=  (2.11) 

2.4 The LIDAR Based Vehicle Classification Algorithm 
The eight shape measurements and various tests described above are combined into the LIDAR based 

classification decision tree shown in Figure 2-5. This figure shows our classification algorithm for non-occluded 
vehicles that we produced, based on the development dataset. As noted above, before applying this algorithm we 
automatically differentiate between non-occluded and partially occluded vehicles. For the latter group we cannot be 
as precise as Figure 2-5 for our classification, as follows. 

2.4.1 Classifying Partially Occluded Vehicles 
While some information is missing about the partially occluded vehicles, the intersection between the 

occluded and the occluder dimensions bound the size of the occluded vehicle, i.e., the size of the occluded part of 
the vehicle is no larger than the size of the occluder vehicle. Being careful not to double count scans where both the 
occluder and occluded are seen "overlapping", the length of the non-overlapping portion of the occluder vehicle is 
measured and the length of the occluded vehicle is bounded by Equation (2.12). Overlapping is not an issue for 
height, and the height of the occluded vehicle is bounded by Equation (2.13). 

NOLco
est
oo VLVLVLVL −+≤≤  (2.12) 

Where, 
VLo

est = estimation of unknown actual vehicle length of the occluded vehicle, 

VLo = vehicle length seen from the occluded vehicle, 

VLc-NOL = vehicle length of non-overlapping portion of the occluder vehicle. 
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Figure 2-5, The decision tree underlying the non-occluded LIDAR based vehicle classification 

algorithm. 
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)VH,VH(MaxVHVH co
est
oo ≤≤  (2.13) 

Where, 
VHo

est = estimation of unknown actual vehicle height of the occluded vehicle, 

VHo = vehicle height seen from the occluded vehicle, 

VHc = vehicle height from the occluder vehicle. 

In this proof of concept study we only attempt to classify occlusions that involve two vehicles, though the 
principles could easily be extended to more complicated multi-vehicle occlusions. When classifying a partially 
occluded vehicle, the six classes are defined by static boundaries in the vehicle length and vehicle height plane, as 
shown in Figure 2-6 (compare to Figure 2-3). Because est

oVL  and est
oVH  each span a range, it is possible for a 

partially occluded vehicle to be associated with more than one class. 

2.5 Evaluation of the LIDAR Based Vehicle Classification Algorithm 
Thus far this research has used a single development dataset collected on July 9, 2009 to derive the 

classification algorithm. In addition to the development dataset, we collected three additional freeway datasets and 
three arterial datasets for evaluation. We used a total of just over 15 hrs of data: 24 min for development and the rest 
for evaluation. All of the datasets were collected in the Columbus metropolitan area. All locations were visited a 
single time in this study except for I-71, which we visited twice. The facility, number of lanes, date, time period, 
duration, and distance between the LIDAR sensors and travel lanes are shown in the first few columns of Table 2-1, 
while Appendix A provides further information about each site. The next four columns of Table 2-1 show the 
average speed over all vehicles seen in the data collection period, the number of vehicles seen, the number of 
vehicles that our algorithm labeled as partially occluded, and the number of totally occluded vehicles as counted by 
the detectors (except for the SR-315 location, all of the sites had a separate detector that was used to find the totally 
occluded vehicles). Among the freeway datasets two come from free flow (5.4 hrs) and two from mild congestion 
(3.5 hrs). All of the data sets come from clear weather conditions.  

Overall the algorithm suspected 2,938 out of 27,450 vehicles (11%) are partially occluded and these 
vehicles are excluded from the classification algorithm performance evaluation in Tables 2-1 and 2-2. Instead, we 
separately evaluate the classification performance on partially occluded vehicles at the end of this section. The 
highest rate of partially occluded vehicles occurred at the I-71 site on Nov 19, 2009 under mildly congested 
conditions (22.6%), while the lowest rate of partially occluded vehicles on the freeway segments occurred on SR-
315 (9.6%). Not surprisingly, across the four freeway datasets the percentage of partially occluded vehicles 
increased as the number of lanes increased and at the I-71 location, as congestion increased (17.2% in free flow and 
22.6% in mild congestion).  

The vehicle class was manually reduced from the video ground truth data for all 27,450 vehicles in these 
datasets and the partial occlusions were verified at that time (see Chapter 3 for an example of the data reduction 
tool). We also ran the classification algorithm from Figure 2-5 on the datasets and the last three columns of Table 2-
1 show the performance of the algorithm against the ground truth data. The errors are tallied on a per-vehicle basis, 
and thus, are not allowed to cancel one another across vehicles. Collectively, the algorithm correctly classifies 
24,390 out of 24,512 non-occluded vehicles (99.5%) and misclassifies 122 vehicles (0.5%). The error rate was low 
across all seven datasets taken separately, the largest error rate was only 0.7%. The distance between the LIDAR and 
the roadway does not appear to have a large effect even though the further away a target vehicle is the smaller 
portion of the LIDAR field of view it occupies (and thus, the fewer angles in a LIDAR scan that provide vehicle 
returns). Among the freeway datasets the performance appears to degrade slightly as the average speed increases due 
to the 37 Hz sampling rate, but with only four datasets, the number is not large enough to draw any firm 
conclusions. 
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Table 2-2, Comparison of LIDAR based vehicle classification and actual vehicle class from the six 
evaluation ground truth datasets. 

From six evaluation 
datasets 

LIDAR vehicle classification Number of 
 vehicles 

from ground 
 truth data 

% correct 

Number of partially 
occluded vehicles that  

are excluded from 
LIDAR based vehicle 

classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
truth  
data 

MC 31 3 0 0 0 0 34 91.2% 4 

PV* 
PV 10 20,762 3 15 0 0 20,790 99.9% 2,366 

PVPT 0 2 192 6 3 1 204 94.1% 25 
SUT 0 30 4 688 4 2 728 94.5% 61 

MUT* 
SUPT 0 0 6 2 31 6 45 68.9% 2 
MUT 0 0 3 9 5 1,192 1,209 98.6% 169 

Number of vehicles 
from LIDAR vehicle 

 classification 
41 20,797 208 720 43 1,201 23,010 99.5% 2,627 

% correct 75.6% 99.8% 92.3% 95.6% 72.1% 99.3% 99.5%   

 

 

 
Figure 2-6, The classification space for partially occluded vehicles. 
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Table 2-2 shows the classification results by class against the ground truth data for all six evaluation 
datasets combined (see Appendix B for the results by station). The cells on the diagonal tally the number of vehicles 
where the LIDAR classification is the same as the ground truth classification, while the off-diagonal cells tally the 
incorrect vehicle classifications. The final row indicates the percentage correct among the vehicles assigned the 
given classification by the algorithm, while the second to the last column indicates percentage correct among the 
vehicles from the given class in the ground truth data. The last column tallies the number of partially occluded 
vehicles-by-class that are excluded from the non-occluded LIDAR based vehicle classification. Often an operating 
agency will group PVPT with PV and SUTPT with MUT, for reference, these supersets are shown in the table, 
denoted PV* and MUT*, respectively. If using the two supersets, 14% of the errors (16 vehicles) in Table 2-2 and 
16% of the errors (20 vehicles) in Table 2-1 would be eliminated. Overall, the algorithm correctly classified a total 
of 22,896 out of 23,010 vehicles (99.5%) in the evaluation datasets.  

The most common errors are between PV and SUT because the length and height ranges of these vehicles 
overlap (30 SUT misclassified as PV and 15 PV misclassified as SUT), accounting for 39% of all errors. Also of 
note, we see 10 PV misclassified as MC. All of these PV were confirmed to have exceptionally short length, e.g., a 
7.5 ft long commuter car (Smart Car). As with PV/SUT the MC/PV problem arises because the length and height 
ranges overlap between the two classes (3 MC were also misclassified as PV). This problem is not unique to 
LIDAR, the relatively new commuter cars will likely degrade the performance of most classification technologies 
when segregating MC. However, with the higher vantage point envisioned in our future research, the LIDAR should 
also be able to measure vehicle width, which should distinguish MC from commuter cars. 

Finally, the algorithm for classifying partially occluded vehicles was applied to 1.5 hrs of the I-270 dataset. 
There were 465 partially occluded vehicles detected and of these, 219 are placed into a single feasible class (47% of 
partially occluded vehicles) and only six of these (3%) are incorrectly classified. The remaining 246 partially 
occluded vehicles are assigned two more feasible vehicle classes. Within this set, 34 (14%) were assigned all six 
classes. Out of the remaining 212 vehicles, 96% had the correct class among the two or more classes assigned to the 
given vehicle. 

2.6 Conclusions 
This chapter developed and tested a side-fire LIDAR based vehicle classification algorithm. The algorithm 

includes up to eight different measurements of vehicle shape to sort vehicles into six different classes. The algorithm 
was tested over seven datasets collected at various locations (including one development dataset). The results were 
compared against concurrent video-recorded ground truth data on a per-vehicle basis. Overall, 2,938 out of 27,450 
vehicles (11%) are suspected of being partially occluded and these vehicles are classified separately. Occlusions are 
inevitable given the low vantage point of the sensors in this proof of concept study. In future research we will 
investigate higher views (comparable to typical microwave radar detector deployments) to mitigate the impact of 
occlusions. These higher views should also provide additional features, e.g., vehicle width. Unlike video, a vehicle's 
width and height are easily separable in the LIDAR ranging data. The algorithm correctly classifies 24,390 of the 
24,512 non-occluded vehicles (99.5%). While most side-fire detectors have challenges with occluded vehicles, the 
algorithms developed by this project are able to work around many of the problems. When a vehicle was partially 
occluded, we calculate the range of feasible length and height. These ranges are then used to assign one or more 
feasible vehicle classes to the given vehicle. Among these partially occluded vehicles, 47% were assigned a single 
class and 97% of these were correct. 

Finally, this work also uncovered an emerging challenge facing most vehicle classification technologies: 
separating commuter cars from motorcycles. The two groups have similar lengths, axle spacing and height, though 
they differ in width and likely in weight. With increased interest in classifying motorcycles correctly, combined with 
more commuter cars on the road, there is a need to devise a means to separate the two types of vehicles. 

Alternatively, recognizing the difficulty in distinguishing pairs of vehicle classes with the existing detector 
infrastructure (e.g., commuter cars and motorcycles, short SUT and PV), there may be a need to create buffer classes 
to impart greater confidence in the reported classifications, e.g., adding a new "class 3 or class 5" bin to the axle-
based decision tree that takes the upper portion of axle class 3 and lower portion of axle class 5 axle spacings. Thus 
confining the uncertainty to a much smaller number of vehicles and ensuring much greater confidence that anything 
that is classified as "strictly class 5" is indeed axle class 5. 
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3 USING LIDAR TO VALIDATE THE PERFORMANCE OF VEHICLE 
CLASSIFICATION STATIONS  

3.1 Introduction 
Vehicle classification data are used in many transportation applications, including: pavement design, 

environmental impact studies, traffic control, and traffic safety [1]. There are several classification methods, 
including: axle-based (e.g., pneumatic tube and piezoelectric detectors), vehicle length-based (e.g., dual loop and 
some wayside microwave detectors), as well as emerging machine vision based detection. Each sensor technology 
has its own strengths and weaknesses regarding costs, performance, and ease of use. As noted in the Traffic 
Monitoring Guide [1], the quality of data collected depends on the operating agency to periodically calibrate, test, 
and validate the performance of classification sensors. However, such a periodic performance monitoring has been 
prohibitively labor intensive because the only option has been to manually validate the performance, e.g., classifying 
a sample by hand. Furthermore, the manual classifications are prone to human error and conventional aggregation 
periods allow classification errors to cancel one another.  

In the present study we develop a classification performance monitoring system to allow operating agencies 
to rapidly assess the health of their classification stations on a per vehicle basis. We eliminate most of the labor 
demands and instead, deploy a portable non-intrusive vehicle classification system (PNVCS) to classify vehicles, 
concurrent with an existing classification station. For this study we use a side-fire LIDAR (light detection and 
ranging) based classifier for the PNVCS discussed in Chapter 2. Figure 3-1 shows a flowchart of our performance 
evaluation system. The existing classification station normally follows the three boxes within the dashed region (top 
left of the figure) when it is not under evaluation and the PNVCS is shown immediately to the right of the dashed 
region. To prevent classification errors from canceling one another in aggregate, we record per-vehicle record (pvr) 
data in the field from both systems. After the field collection the classification results are evaluated on a per-vehicle 
basis. Algorithms for time synchronization and for matching observations of a given vehicle between the two 
classification systems are developed in this study. These algorithms automatically compare the vehicle classification 
between the existing classification station and the PNVCS for each vehicle. The conventional 13 axle-based classes 
are consolidated into four classes to facilitate comparison with the LIDAR PNVCS in Chapter 2, i.e., motorcycle 
(MC) - axle class 1, passenger vehicle (PV) - axle classes 2-3, single unit truck/bus (SUT) - axle classes 4-7, and 
multiple unit truck (MUT) - axle classes 8-13. If the two systems agree, the given vehicle is automatically taken as a 
success by the classification station (under the implicit assumption that few vehicles will be misclassified the same 
way by the two independent systems). The temporary deployment includes a video camera (right-most path in 
Figure 3-1) to allow a human to assess any discrepancies. A human only looks at a given vehicle when the two 
systems disagree, and for this task we have developed tools to semi-automate the manual validation process, greatly 
increasing the efficiency and accuracy of the human user. The datasets in this study take only a few minutes for the 
user to validate an hour of pvr data from a multi-lane facility. 

Although we use a LIDAR based system, the tools at the heart of the methodology are transferable to many 
PNVCS such as the TIRTL by Control Specialists, AxleLight by Quixote, and the prototype ORADS (more recently 
NTMS) by Spectra Research [15-18]. These systems were specifically developed to replace pneumatic tubes and use 
light beams just above the pavement to implement axle-based classification. The TIRTL performed very well at 
measuring axle spacing on two lane highways, typically above 95% accuracy [19], though some studies found an 
error rate of 24% among the truck classes due to the default decision tree [20-22]. While the AxleLight had an error 
rate for the truck classes up to 34% in high volume across four lanes [21-23], which was attributed to the sensor 
mistaking closely-following two-axle vehicles for multi-axle trucks. Most of the errors in [21-22] were corrected by 
post-processing the pvr data from AxleLite and TIRTL using a new decision tree. Meanwhile, other studies found 
the TIRTL performance degrades on four lane roads [24]. Finally, commercial side-fire microwave radar systems do 
not currently appear to offer sufficient classification accuracy to be used for this application. Even allowing the 
individual errors to cancel, the SmartSensor had an overall error rate for trucks (SUT and MUT combined) of 46% 
[20], 80% [25], 50%-400% [24], 20%-50% [19] and the RTMS had an error rate for trucks of 25% [20], 40%-97% 
[24]. Two studies used a small sample of pvr data, only a few hundred vehicles, and found the SmartSensor had an 
error rate for trucks of 13%-57% [23], 42% [21]. 
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Figure 3-1,  Flowchart of the evaluation of an existing vehicle classification station using LIDAR 

PNVCS vehicle classification. The existing station is shown in the dashed box at the top 
left. In normal operation most classifiers go one step further than shown in the dashed box 
and aggregate the pvr data by time period. 
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This pilot study used a LIDAR based PNVCS mounted on a van (see, e.g., Figure 2-1(b)). This approach 
offers a distinct advantage over the other PNVCS since our system does not require any calibration in the field, in 
fact the van can be classifying vehicles as it pulls up to the site. For longer-term deployments we envision a 
dedicated trailer that could be parked alongside the road. 

The remainder of this chapter is organized as follows. First the process of collecting the concurrent pvr 
vehicle classification data from the LIDAR and existing classification station is presented. Next the performance 
evaluation methodology is developed. Third, the methodology is applied to several permanent and temporary 
vehicle classification stations to evaluate axle and length-based classification. The evaluation datasets include over 
21,000 vehicles, less than 8% of which required manual intervention. Finally, the chapter closes with conclusions. 

3.2 Methodology of Using a PNVCS to Evaluate Classification Station 
Performance 

This section develops the semi-automated performance evaluation methodology for an existing 
classification station using LIDAR PNVCS classification, as shown in Figure 3-1. There are four key steps 
discussed below, first the input classification data itself, second the time synchronization algorithm, third the vehicle 
matching algorithm to match observations of a given vehicle between the two classification systems, and fourth the 
semi-automated tool to allow a human to rapidly review any discrepancies between the two classification systems. 
The discrepancies include both conflicting classifications and vehicles seen by just one of the systems. In the 
absence of a discrepancy, a vehicle is automatically recorded as a successful classification, without human 
intervention. 

Given the low mounting location of the LIDAR sensors used in this study, vehicles in further lanes are 
susceptible to occlusions from vehicles in closer lanes. Totally occluded vehicles are a discrepancy handled in the 
above steps. Partial occlusions degrade the LIDAR classification performance, but the LIDAR classifier can 
automatically detect when a partial occlusion occurs (Chapter 2 found roughly 11% of the vehicles were partially 
occluded). These vehicles are counted to ensure both detectors saw a single vehicle pass, but for now the 
classifications are not used since a partial occlusion in the LIDAR should not be correlated with misclassifications 
by the existing station. In practice this approach would necessitate collecting a slightly larger dataset to 
accommodate the fact that some of the vehicles will not be used in the final comparison. Alternatively, if simply 
setting the partially occluded vehicles aside like this is unacceptable, then Section 2.4.1 presents a means to classify 
them to one or more classes. In the previous chapter roughly 50% of the partially occluded vehicles were assigned to 
a single class and could be processed automatically by the vehicle matching algorithm. The rest could be treated as a 
discrepancy and subjected to human evaluation with the semi-automated tool, thus, slightly increasing the number of 
vehicles sent for human assessment. 

3.2.1 The Classification Data 
Our prototype LIDAR based vehicle classification platform consists of two LIDAR sensors mounted at a 

height of about 6.7 ft above ground on the driver's side of a minivan parked alongside the roadway, as discussed in 
Chapter 2. The LIDAR sensors provide a rich view of the passing vehicles, each scan sweeps a 180° arc vertically 
across the road, returning the distance to the nearest object (if any) at 0.5° increments with a ranging resolution of 
0.1 inch and a maximum range of 262 ft. To classify vehicles, first we segment them from the background, look for 
possible occlusions in further lanes, and then we measure several features of size and shape for each non-occluded 
vehicle. The algorithm uses these features to classify the vehicle clusters into six vehicle classes: MC, PV, PV 
pulling a trailer (PVPT), SUT, SUT pulling a trailer (SUTPT), and MUT. For this chapter PVPT are included with 
PV and SUTPT are included with MUT, following common axle-based classification conventions. 

In the present study we evaluate both axle-based classification and length-based classification. We evaluate 
two permanent vehicle classification stations (total of three directional stations) with dual loop detectors and a 
piezoelectric sensor in each lane and two temporary vehicle classification deployments (total of four directional 
stations) with pneumatic tubes. Both systems provide the conventional 13 axle-based classes. The permanent vehicle 
classification stations also provide length-based vehicle classification with three length-classes that are intended to 
map to PV, SUT and MUT, respectively. Finally, we also tested the system at a single loop detector station using 
[14] for length-based classification. All of the datasets were collected in the Columbus, Ohio, metropolitan area (see 
Appendix A for more details). 
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3.2.2 Time Synchronization 
The LIDAR PNVCS and the existing classification station clocks are independent, so before any 

comparisons are made it is necessary to first find the offset between the two systems. To automatically find this 
offset we borrow an approach from our earlier vehicle reidentification work, e.g., [26], only now the two locations 
are concurrent, so the vehicle headways become a unique signature and our algorithm looks for sequences of 
headways. The algorithm has to accommodate the fact that any given vehicle may be seen in just one dataset or the 
other due to detection errors and LIDAR occlusions, hence our use of the vehicle reidentification work. 

The algorithm currently uses arrivals in one lane, over one minute.2 We arbitrarily select one vehicle in the 
LIDAR data as the reference (0-th vehicle), examine all n vehicles that follow within a minute, and record their 
arrival times, !!!. The only constraint is that there must be concurrent data from the classification station. We then 
step through the station's vehicles from the same lane, successively taking each one as the station's reference (K-th 
vehicle, with arrival time C

Kt ) to test the assumption that C
K

L
0 tt =  by evaluating all m vehicles that follow within a 

minute, and their arrival times tj
C. For each value of K the algorithm tallies the number of times the n LIDAR 

vehicles arrive within one second of the m station vehicles, i.e., finds the rate of virtually matched vehicles (RVMK) 
from Equation (3.1). Figure 3-2 shows an example of RVMK versus the resulting offset time, !!! − !!!  from the K-th 
vehicle from SR-33 northbound in each lane. The algorithm selects the value of K with the largest RVMK and uses 
this as the final offset, it then subtracts the corresponding offset time, !!! − !!! , from the entire LIDAR dataset. In 
Figure 3-2 the final offset time from lane 1 is -436.6 sec and from lane 2 is -436.5 sec. In this case the classification 
station clock is 436 sec later than the LIDAR. 
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3.2.3 Vehicle Matching 
After time synchronization, most vehicles in one dataset have a unique match in the other. However, the 

pvr data from many of the classification stations used in this study only reported arrival times to the second. So there 
may be many vehicles in either set that have two possible matches. With subsecond precision most of these 
ambiguities would be resolved, but some would likely remain. In any event, the vehicle matching algorithm seeks to 
find the best match for a vehicle that has two or more possible matches by accounting for the vehicles immediately 
before and after the ambiguity, as well as the vehicle classes assigned to these vehicles by the two sensor systems. 

Formalizing the process, the i-th LIDAR PNVCS observation and j-th classification station observation are 
taken as a possible match if !!! − !!! < 1  !"#. The results can be summarized in a feasible vehicle matrix. The 
matrix is indexed by successive vehicle number in each dataset (LIDAR on the ordinate and classification station on 
the abscissa). Each element of the matrix is the outcome of the temporal comparison for the ij pair. Figure 3-3 shows 
an example of the feasible vehicle matrix using 11 successive vehicles from both datasets in lane 1 at SR-33 
northbound. Most cells are empty, indicating there is no match, while “O” indicates a possible match for the ij pair 
of vehicles. The matrix shows that two classification station vehicles (379 and 383) and two LIDAR vehicles (380 
and 381) have no matches in the other dataset. These unmatched vehicles will automatically be sent for manual 
review by the algorithm (see next section). Upon reviewing the concurrent video, the two unmatched classification 
station vehicles were totally occluded in the LIDAR while the two unmatched LIDAR vehicles were completely 
missed by the classification station.  

A given vehicle can have at most one true match and indeed, most of the vehicles in Figure 3-3 have a 
single match. If a given possible match is the only match in the given row and column, that match is retained as a 
final match. Otherwise, the vehicle matching algorithm has to choose between the possible matches, e.g., 
classification station vehicle 374 and LIDAR vehicle 372 each have two possible matches. The algorithm assumes 
that vehicles maintain the same order in the two datasets, in which case, the true (but unknown) matches should fall 
into sequences in the feasible vehicle matrix (manifest as diagonal lines of possible matches at 45°). Whenever a 
vehicle has more than one possible match, the vehicle matching algorithm collects the group of all involved vehicles 
from each detector (classification station vehicles 373-374 and LIDAR vehicles 372-373 in Figure 3-3). Figure 3-
4(a) shows an extreme hypothetical example, where almost every vehicle falls into one of three distinct groups of  

                                                             
2 Expanding to multiple lanes or longer duration would improve the precision in challenging conditions. 
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Figure 3-2, RVMK versus the resulting offset time as a function of K from SR-33 northbound, (a) Lane 

1, the peak shows the final offset time is -436.6 sec, and (b) Lane 2, the peak shows the 
final offset time is -436.5 second. 

 
Figure 3-3, A feasible vehicle matrix, summarizing the outcome from the difference of arrival times 

between the LIDAR and classification station data in lane 1 at SR-33 northbound. 

(b) 

(a) 
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Figure 3-4, (a) hypothetical feasible vehicle matrix in which many rows and columns have multiple 

matches, (b) isolating the distinct groups of vehicles, the groups are numbered for 
reference, (c) selecting the longest sequence from the given group. Note that the two 
sequences in group 2 are equal length, so the algorithm would then compare the 
classification results from the two sensor systems and select the sequence with the strongest 
similarity between the two sensor systems.  

 

 
Figure 3-5, A snapshot of the semi-automated GUI verification tool processing a conflicting 

classification for a vehicle in lane 1 at SR-33 northbound. The GUI window consists of 
four interfaces: (a) plot of transition pulses, the plot shows for each lane the classification 
station data (top curve) and LIDAR data (bottom curve) and the current instant is shown 
with a vertical dashed line, (b) the current video frame, (c) the LIDAR returns from the 
vehicle in question, and (d) a panel for controlling the review and entering ground truth 
data. So in this case the GUI is at the second visible pulse in lane 1 (counted from the left 
hand side) and is ready for the user to assess the data using the buttons on the right of part 
(d).  
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vehicles, as shown in Figure 3-4(b). If there is a single longest sequence in a group, the algorithm selects that 
sequence as final matches, Figure 3-4(c). Otherwise, if there are two or more sequences tied for the longest 
sequence, the algorithm considers the classifications assigned by the two sensor systems and chooses the sequence 
with the best classification agreement, e.g., as would be necessary for group 2 in Figure 3-4(c). 

3.2.4 Manual Verification Using a Semi-Automated Tool 
Inspired by VideoSync [27], a purpose built software ground truthing tool with a graphical user interface 

(GUI) was developed in MATLAB to efficiently generate ground truth data and increase the accuracy of the human 
user. After the time synchronization and vehicle matching steps above, the GUI loads the pvr classifications from 
the classification station and the LIDAR PNVCS. The user can choose which set(s) of vehicles they wish to review: 
(i) seen only in LIDAR, (ii) seen only at the classification station, (iii) conflicting classifications between the two 
sources, and/or (iv) consistent classification between the two sources. Normally the user would select the three error 
conditions, i.e., sets i-iii. Next, the user chooses one or more lanes to review, then the GUI steps through all of the 
vehicles in the given set(s) and lane(s). Figure 3-5 shows an example of the GUI as a SUT passes. For each vehicle 
the GUI displays the raw LIDAR data and the raw classification station data for a few seconds before and after the 
given vehicle detection (Figure 3-5(c) and (a), respectively). The GUI shows the video frame at the instant of the 
vehicle passage (Figure 3-5(b)), and allows the user to step forward or back in the video to see the evolution if 
necessary (Figure 3-5(d)). The bottom right corner of the GUI shows the user what vehicle class was assigned by the 
station and the LIDAR. After assessing the concurrent sensor and video data, the user records the observed vehicle 
class (or detection error) for the current actuation via the buttons in the two right-most boxes of Figure 3-5(d). As 
soon as the user enters a selection, the GUI jumps to the next actuation in the selected set(s) and lane(s) until all of 
the vehicles have been reviewed in the given set(s) from the entire time period with video data. In this study the user 
typically spent 3-5 sec per vehicle reviewed (including seek time and loading time), but only about 8% of the 
actuations required review. The automated process does the bulk of the work, in this study it typically took the 
human only a few minutes to process the exceptions from all lanes over one hour of data. 

3.3 Results of Using a PNVCS to Evaluate Classification Station Performance 

3.3.1 Axle-Based Classification Stations 
As noted above, we collected concurrent LIDAR and classification station pvr data at two permanent axle 

classification stations (I-270 and SR-33) with dual loop detectors and a piezoelectric sensor in each lane and two 
temporary axle classification deployments (Wilson Rd and Dublin Rd) with pneumatic tubes. Table 3-1 enumerates 
the location, date, duration, and number of lanes in the first few columns. All locations yielded data for the direction 
of travel adjacent to the minivan (top rows in the table). We parked the van on both sides of Wilson Rd, hence both 
NB and SB nearside data for this location. Almost all of the locations provided sufficient view of the far lanes in the 
opposing direction to allow LIDAR classification, shown in the lower portion of the table. The one exception was I-
270, where the median barrier and superelevation precluded a view of the opposing lanes. In any event, all lanes are 
numbered successively from the LIDAR minivan, regardless of the direction of travel. 

Columns (a) and (b) show the number of actuations reported by the LIDAR and classification data 
(including any non-vehicle actuations). Columns (c)-(e) show the number of matched and unmatched actuations 
after the vehicle matching algorithm. Column (f) sums columns (c), (d), and (e), yielding the number of actuations 
seen by one or both sensors. Column (g) tallies the number of partially occluded vehicles detected in the LIDAR (as 
per Section 2.2.1) and seen by the classification station. Since the partial occlusions do not reflect any error by the 
classification station, at present they are excluded from further analysis.3 Column (h) shows the number of 
actuations for which the algorithm compared the respective classifications from the two systems and from this set (i) 
tallies the disagreement. The percentage of disagreement is below 8% for all lanes studied and below 4% for most of 
them. Columns (j) and (k) reiterate (d) and (e) as percentages of (f). Finally, column (l) tallies the number of 
vehicles subject to manual verification (sum of columns (d), (e) and (i), as a percent of (f)). 

 
  

                                                             
3 See Section 2.2 for a discussion on how the partially occluded vehicles can be handled if they are specifically of interest. 
Roughly half of these vehicles would require human review, slightly increasing the labor demands for the evaluation. 
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Table 3-1, Summary of the automated comparison of vehicle classification between LIDAR and axle 
data at seven directional classification stations, 

LIDAR 
sensor 

direction  
relative to 

vehicle  
travel 

direction 

 
Loca- 
tion 

(direc- 
tion) 

 
Date 

Dura- 
tion 
(hh: 
min) 

Lane 
num- 
ber 

from 
LIDAR 

Number of 
vehicles seen 

in; 

From the algorithm 
of vehicle matching 

Number 
of 

vehicles 
passing 

the 
location 

(f) 

Number 
of 

partially 
occluded 
vehicles 

(g) 

Comparison of 
vehicle 

classification 

% vehicles 
not detected by; Number of  

vehicles 
manually 
confirmed 

(l) 

Number  
of 

vehicles 
seen in 

both 
LIDAR 

and Axle 
(c) 

Number of 
vehicles only 

seen in; 

LIDAR 
(a) 

Axle 
(b) 

LIDAR 
(d) 

Axle 
(e) 

Number  
of 

compared 
vehicles 

(h) 

Dis- 
agree- 
ment 

(i) 

LIDAR 
(j) 

Axle 
(k) 

Adjacent 

I-270 
(SB) 11/02/2010 5:00 

1 5,415 5,452 5,389 26 63 5,478 n/a 5,389 188 
(3.5%) 1.2% 0.5% 277 

(5.1%) 

2 5,335 5,488 5,303 32 185 5,520 641 4,662 145 
(3.1%) 3.4% 0.6% 362 

(6.6%) 

3 2,647 2,789 2,615 32 174 2,821 713 1,902 24 
(1.3%) 6.2% 1.1% 230 

(8.2%) 
Dublin 
(SB) 10/28/2010 2:50 1 1,344 1,317 1,313 31 4 1,348 n/a 1,313 80 

(6.1%) 0.3% 2.3% 115 
(8.5%) 

Wilson 
(NB) 10/28/2010 1:40 1 666 664 658 8 6 672 n/a 658 24 

(3.6%) 0.9% 1.2% 38 
(5.7%) 

Wilson 
(SB) 10/28/2010 1:40 1 711 712 701 10 11 722 n/a 701 21 

(3.0%) 1.5% 1.4% 42 
(5.8%) 

SR-33 
(NB) 08/03/2011 1:10 

1 732 693 684 48 9 741 n/a 684 32 
(4.7%) 1.2% 6.5% 89 

(12.0%) 

2 569 562 547 22 15 584 65 482 6 
(1.2%) 2.6% 3.8% 43 

(7.4%) 

Subtotal of adjacent 12:20 - 17,419 17,677 17,210 209 467 17,886 1,419 15,791 520 
(3.3%) 2.6% 1.2% 1,196 

(6.7%) 

Opposite 

Dublin 
(NB) 10/28/2010 2:50 2 940 943 933 7 10 950 75 858 52 

(6.1%) 1.1% 0.7% 69 
(7.3%) 

Wilson 
(NB) 10/28/2010 1:40 2 749 752 742 7 10 759 58 684 18 

(2.6%) 1.3% 0.9% 35 
(4.6%) 

Wilson 
(SB) 10/28/2010 1:40 2 741 735 723 18 12 753 47 676 24 

(3.6%) 1.6% 2.4% 54 
(7.2%) 

SR-33 
(SB) 08/03/2011 1:10 

3 592 587 548 44 39 631 53 495 9 
(1.8%) 6.2% 7.0% 92 

(14.6%) 

4 888 884 838 50 46 934 148 690 54 
(7.8%) 4.9% 5.4% 150 

(16.1%) 

Subtotal of opposite 7:20 - 3,910 3,901 3,784 126 117 4,027 381 3,403 157 
(4.6%) 2.9% 3.1% 400 

(9.9%) 

Overall 19:40 - 21,329 21,578 20,994 335 584 21,913 1,800 19,194 677 
(3.5%) 2.7% 1.5% 1,596 

(7.3%) 
n/a: occlusions are infeasible in this lane because it is adjacent to the LIDAR sensor 
(a) = (c + d) 
(b) = (c + e) 
(f) = (a + e) = (b + d) 
(h) = (c) – (g) 
(j) = (e) / (f) 
(k) = (d) / (f) 
(l) = (d + e + i), where the percentage is relative to (f) 
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Table 3-2, Manual verification of the vehicles with conflicting classifications or only seen by one 
sensor using the semi-automated tool, 

LIDAR 
sensor 

direction  
relative to 

vehicle  
travel 

direction 

Loca- 
tion 

(direc- 
tion) 

Lane 
num- 
ber 

from 
LIDAR 

Number of 
vehicles 

not 
detected  

by LIDAR 
(e) 

Reason 

Number of 
vehicles 

not 
detected   
by Axle 

(d) 

Reason 
Number  

of 
vehicles  

in 
disagree- 

ment 
(i) 

Verification of 
disagreement  

 
% axle 
miss- 

classified 
(r) 

 
 

% total  
axle 
error 
(s) 

Totally 
occluded 
vehicle 

LIDAR 
missed 
vehicle 

Axle 
non- 

vehicle 
actuation 

(m) 

Axle 
missed 
vehicle 

 (n) 

LIDAR 
non- 

vehicle 
actuation 

LIDAR 
correct, 

Axle 
incorrect 

 (p) 

LIDAR 
incorrect, 

Axle 
correct 

 

LIDAR 
incorrect 

Axle 
incorrect 

(q) 

Adjacent 

I-270 
(SB) 

1 63 n/a 63 0 26 26 0 188 148 36 4 2.8% 3.2% 

2 185 116 69 0 32 32 0 145 113 30 2 2.5% 2.6% 

3 174 141 33 0 32 32 0 24 20 4 0 1.1% 1.7% 
Dublin 
(SB) 1 4 n/a 4 0 31 31 0 80 76 4 0 5.8% 7.9% 

Wilson 
(NB) 1 6 n/a 6 0 8 8 0 24 22 2 0 3.3% 4.5% 

Wilson 
(SB) 1 11 n/a 11 0 10 10 0 21 18 3 0 2.6% 3.9% 

SR-33 
(NB) 

1 9 n/a 9 0 48 48 0 32 26 4 2 4.1% 10.3% 

2 15 8 7 0 22 22 0 6 5 1 0 1.0% 4.5% 

Subtotal of adjacent 467 265 202 0 209 209 0 520 428 84 8 2.8% 3.6% 

Opposite 

Dublin 
(NB) 2 10 5 1 4 7 7 0 52 48 3 1 5.7% 6.3% 

Wilson 
(NB) 2 10 5 5 0 7 7 0 18 15 3 0 2.2% 2.9% 

Wilson 
(SB) 2 12 10 2 0 18 18 0 24 22 2 0 3.3% 5.3% 

SR-33 
(SB) 

3 39 27 12 0 44 44 0 9 6 3 0 1.2% 7.9% 

4 46 41 4 1 50 50 0 54 42 11 1 6.2% 10.1% 

Subtotal of opposite 117 88 24 5 126 126 0 157 133 22 2 4.0% 6.6% 

Overall 584 353 226 5 335 335 0 677 561 106 10 3.0% 4.1% 
n/a: occlusions are infeasible in this lane because it is adjacent to the LIDAR sensor  
 
 (r) = (p+q) / (h) 
 (s) = (p+q+m+n)/(f-m) 
 
Note (f) and (h) are shown in Table 3-1. 
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Table 3-2 summarizes the results from manual verification for the vehicles with a discrepancy in Table 3-1 
(columns (d), (e) and (i)). Of the vehicles that were not detected by the LIDAR (column e), 60% (353 out of 584) are 
due to completely occluded vehicles, 39% (226 out of 584) are due to the LIDAR missing unoccluded vehicles, and 
1% (5 out of 584) are due to non-vehicle actuations at the classification station. Upon review, it turns out that all 335 
of the actuations that were not detected at the classification stations (column d) were due to those stations missing 
the vehicles. Of the vehicles with conflicting classification (column i), the classification station was incorrect 84% 
of the time (571 out of 677). Assuming few vehicles are misclassified the same way by the two systems, all of the 
agreements are automatically tallied as a success by the classification station. As a result, the classification stations 
exhibited an overall misclassification rate of 3% (sum of columns (p) and (q) as a percent of (h)), and including the 
undetected vehicles, an overall error rate of 4.5% (sum of columns (m), (n), (p), and (q) divided by [(f)-(m)]). The 
highest error rate observed in a lane was 10.3%. 

To ensure the validity of the assumption that no individual vehicles were misclassified the same way by 
both systems, (and thus, by extension, degrade the accuracy of the above results), we manually verified the class of 
15,271 out of the 18,517 vehicles that the two systems gave the same class. As noted above, these vehicles would 
normally be assigned "success" automatically, without review by a person. Within the manually verified data set, 
99.8% (15,245 out of 15,271) were assigned the correct vehicle class and only 26 vehicles (0.2%) were incorrectly 
classified.  

Table 3-3 compares the specific classification of the non-occluded vehicles detected by both sensors across 
all of the datasets. The columns show the axle classification and rows show the LIDAR classification. The bold 
numbers on the diagonal show the agreement between the two systems and all of the numbers off the axis reflect the 
disagreements. The third row from the bottom and the second column from the end tally the class of vehicles that 
were only seen by one of the detectors. The last column and second to the last row tally the row and column total, 
respectively. The final row presents the number of partially occluded vehicles that were excluded from the 
comparisons, sorted by axle class for reference. Collectively, 4.6% of the non-occluded vehicles (919 out of 20,113) 
are detected by only one sensor, of the remaining 19,194 non-occluded vehicles that were detected by both sensors, 
96.5% (18,517 vehicles) were assigned the same classification from the two systems and 3.5% (677 vehicles) were 
not. 

As noted above, all of the vehicles assigned the same class by both systems are automatically taken to be 
correct, while all of the conflicting classifications were manually validated (i.e., the off diagonal cells in Table 3-3). 
After conducting the manual validation we refer to the collection of the results as pseudo ground truth since the cells 
that were originally in agreement were not manually validated. The axle classification station performance across all 
of the datasets is compared against the pseudo ground truth in Table 3-4. There are a total of 19,760 vehicles in the 
pseudo ground truth data, including 19,194 non-occluded vehicles seen by both sensors, 335 vehicles not detected 
by the axle classification stations, 226 vehicles not detected by the LIDAR sensors, and 5 non-vehicle actuations in 
the axle data. The remaining 353 vehicles from Table 3-3 were completely occluded in the video as well. The 
completely occluded vehicles are excluded from the comparison, but their assigned axle class is reported in the final 
row for reference. No vehicle changed columns from Table 3-3 since the axle classifications did not change, but 
many of the vehicles were reassigned to new rows as a result of the manual validation. The accuracy of pseudo 
ground truth data should be above 99% because most vehicles with the corresponding classification are correctly 
classified (as per above, we found that only 0.2% of the vehicles with the same classification from the two systems 
were incorrectly classified). The classification stations exhibited 95% accuracy overall, but dramatically different 
performance by class. The best performance was on PV and worst performance on MC. It is also important to take 
care reading the table, although 84% of the vehicles classified as SUT by the axle classification stations were indeed 
SUT (column total), only 66% of the SUT were correctly classified as such (row total). This pseudo ground truth 
analysis is repeated by individual station in Appendix C and Table 3-5 summarizes the performance by station. To 
help interpret these results, the final row of Table 3-5 summarizes Table 3-4. The first few columns report the 
number of vehicles seen in the pseudo ground truth for the given class (e.g., the second to the last column in Table 
3-4), the next set of columns present the percentage of vehicles correctly classified in the given class (e.g., the last 
column in Table 3-4), and the last set of columns present the percentage of detector station classifications that were 
correct in the given class (e.g., the second to the last row in Table 3-4). It turns out that the 160 PV misclassified as 
MUT were due to PVPT or systematic errors by the classification station discussed in [28]. Meanwhile, the large 
number of PV misclassified as SUT and vice versa is due to the fact that the range of feasible axle spacings overlap 
between these two groups [28]. 

Table 3-4 shows the worst performance for motorcycles, with only 27% being correctly classified, but this 
table combines data from permanent classification stations and temporary pneumatic tube deployments. 
Unfortunately, as shown in Table 3-5, the pneumatic tubes (Dublin Rd and Wilson Rd) were much better at 
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detecting and classifying the motorcycles than the permanent classification stations (I-270 and SR-33). Reviewing 
the data strictly from the two permanent classification stations with concurrent LIDAR (Appendix C), the pseudo 
ground truth include 15 motorcycles, of which only 1 (7%) was correctly classified by the classification stations. 
Meanwhile, 9 (60%) of the motorcycles were misclassified as longer vehicles and 5 (33%) passed completely 
undetected. Given the fact that these data come from only two classification stations and the number of motorcycles 
is small, further study is warranted.  

3.3.2 Length-Based Classification Stations 
As noted in the introduction, we also used this methodology to evaluate the performance of length-based 

classification. All of the permanent vehicle classification stations also provide length-based and we also tested the 
system at a single loop detector station using [14] for length-based classification. All vehicles below 28 ft are 
assigned to length class 1, all remaining vehicles below 47 ft are assigned to length class 2, and all vehicles above 47 
ft are assigned length class 3; and these length classes are intended to roughly map to PV, SUT and MUT, 
respectively. So for our analysis we map LIDAR MC and PV to length class 1, LIDAR SUT to length class 2, and 
LIDAR MUT to length class 3. Tables 3-6 to 3-9 repeat the comparisons of the previous section, now applied to the 
length-based classification stations. The length-based performance and number of vehicle requiring manual 
validation are comparable to the axle-based classification. Appendix D show the length-based classification pseudo 
ground truth results by station. 

3.4 Conclusions 
Vehicle classification data are critical to many transportation applications, but the quality of data collected 

depends on the operating agency to periodically calibrate, test, and validate the performance of classification 
sensors. These studies are labor intensive and coarse, allowing overcounting errors to cancel undercounting errors. 
To address these challenges, the present work develops a classification performance monitoring system to allow 
operating agencies to rapidly assess the health of their classification stations. We eliminate most of the labor 
demands and instead, deploy a LIDAR based PNVCS to classify vehicles, concurrent with existing classification 
stations. To prevent classification errors from canceling one another in aggregate, we record per-vehicle record (pvr) 
data in the field from both systems. After the field collection the classification results are evaluated on a per-vehicle 
basis. If the two systems agree, the given vehicle is automatically taken as a success by the classification station. 
The PNVCS includes a video camera to allow a human to assess the discrepancies. A human only looks at a given 
vehicle when the two systems disagree, and we developed tools to semi-automate the manual validation process, 
greatly increasing the efficiency and accuracy of the human user. The datasets in this study take only a few minutes 
for the user to validate an hour of pvr data. Although we use a LIDAR based system, the tools at the heart of the 
methodology are transferable to many PNVCS such as the TIRTL or AxleLight. This pilot study used LIDAR 
sensors mounted on a van. This approach offers a distinct advantage over the other PNVCS since our system does 
not require any calibration in the field, in fact the van can be classifying vehicles as it pulls up to the site. For longer-
term deployments we envision a dedicated trailer that could be parked alongside the road. 

The evaluation datasets come from several different classification stations, they include over 21,000 
vehicles. We separately evaluated length-based classification stations and axle-based classification stations, each 
yielding similar results. In each case about 8% of the vehicles required manual intervention. In this study the user 
typically spent 3-5 sec per vehicle reviewed. The automated process does the bulk of the work, in this study it 
typically took the human only a few minutes to process the exceptions from all lanes over one hour of data. 

This evaluation revealed a chronic problem detecting motorcycles at the two permanent classification 
stations studied. While the LIDAR system detected 15 passing motorcycles, the stations correctly classified one of 
them, and missed five altogether. 

As this research has shown, there is wide variance in performance from one station to the next and these 
errors tend to have a higher frequency among the truck classes, particularly the SUT. Since these errors are a 
function of the specific station, there would be benefit in the short term if a given operating agency were to leverage 
the system developed in this research to evaluate the performance of many other classification stations. Thereby 
catching systematic errors that bias classification performance at the given station. 
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Table 3-3, Comparison of LIDAR vehicle classification and axle vehicle classification across seven 
directional locations, 

Overall 

Axle vehicle classification Number of 
LIDAR  
vehicles 

not detected 
by axle 
sensor 

Total 
number of 

LIDAR 
vehicles 

Motor- 
cycle 

Passenger 
vehicle* 

Single 
unit 

truck 

Multiple 
unit 

truck* 

LIDAR 
vehicle 

classification 

Motorcycle 6 12 1 0 12 31 
Passenger vehicle* 2 16,751 127 159 283 17,322 
Single unit truck 1 212 530 96 28 867 

Multiple unit truck* 1 47 19 1,230 12 1,309 
Number of axle vehicles 

not detected by LIDAR sensor 3 555 10 16 - 584 

Total number of axle vehicles above 13 17,577 687 1,501 335 20,113 

Number of partially occluded 
vehicles excluded 

in the comparison matrix 
2 1,571 56 171 - 1,800 

Passenger vehicle* includes passenger vehicle and passenger vehicle pulling a trailer. 
Multiple unit truck* includes single unit truck pulling a trailer and multiple unit truck. 

 

 

Table 3-4, Comparison of pseudo ground truth data and axle vehicle classification across seven 
directional locations, 

Overall 

Axle vehicle classification Number of 
LIDAR vehicles 
not detected by 

axle sensor 

Row 
total 

 
%  

correct 
Motor- 
cycle 

Passenger  
vehicle* 

Single 
unit  

truck 

Multiple 
unit 

truck* 

Pseudo 
ground 

truth data  

Motorcycle 6 2 6 3 5 22 27% 

Passenger vehicle* 2 17,001 94 160 289 17,546 97% 

Single unit truck 1 196 574 79 25 875 66% 

Multiple unit truck* 1 30 9 1,256 16 1,312 96% 

Non-vehicle  
actuation in axle data 2 3 0 0 - 5 - 

Column total above 12 17,232 683 1,498 335 19,760 - 
% correct 50% 99% 84% 84% - - 95% 

Totally occluded vehicle  1 345 4 3 - 353 - 
Passenger vehicle* includes passenger vehicle and passenger vehicle pulling a trailer. 
Multiple unit truck* includes single unit truck pulling a trailer and multiple unit truck. 
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Table 3-5, Summary of evaluation of axle vehicle classification station by a vehicle class. Note 
Wilson Rd northbound and southbound includes both Wilson Rd adjacent to and opposite 
from LIDAR sensor, respectively, 

Location Dire- 
ction 

A number of vehicles  
from pseudo 

ground truth data 

% of pseudo ground  
truth vehicle classified  

correctly 

% of correct axle 
classification 

% of 
correct 

 classifi- 
cation 

 over all  
vehicles MC PV* SUT MUT* MC PV* SUT MUT* MC PV* SUT MUT* 

I-270 SB 7 10,561 500 1,140 14% 99% 61% 97% 50% 98% 95% 92% 97% 

Dublin  
Rd 

NB 2 795 63 6 50% 94% 87% 100% 20% 99% 72% 22% 93% 
SB 2 1,282 53 11 50% 92% 87% 100% 100% 99% 61% 21% 92% 

Wilson  
Rd 

NB 1 1,280 60 27 100% 96% 97% 100% 100% 100% 77% 60% 96% 
SB 2 1,360 29 27 100% 95% 90% 100% 100% 100% 63% 54% 95% 

SR-33 
NB 5 1,114 79 54 0% 95% 57% 87% - 99% 94% 72% 92% 
SB 3 1,154 91 47 0% 93% 46% 79% 0% 98% 84% 62% 89% 

Overall 22 17,546 875 1,312 27% 97% 66% 96% 50% 99% 84% 84% 95% 
PV* includes passenger vehicle and passenger vehicle pulling a trailer. MUT* includes single unit truck pulling a 
trailer and multiple unit truck.  
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Table 3-6, Summary of the comparison of vehicle classification between LIDAR and loop detector 
data at four directional classification stations 

 
Loca- 
tion 

(direc- 
tion) 

Date 

Dura- 
tion 
(hh: 
min) 

Lane 
num- 
ber 

from 
LIDAR 

Number of 
vehicles seen 

in: 

From the algorithm 
of vehicle matching 

Number 
of 

vehicles 
passing 

the 
location 

(f) 

Number 
of 

partially 
occluded 
vehicles 

(g) 

Comparison of 
vehicle 

classification 

% vehicles 
not detected by: Number of  

vehicles 
manually 
confirmed 

(l) 

Number 
of 

vehicles 
seen in 

both 
LIDAR 
and loop 
detector 

(c) 

Number of 
vehicles only 

seen in; 

LIDAR 
(a) 

Loop 
detector 

(b) 

LIDAR 
(d) 

Loop 
detector 

(e) 

Number 
of 

compared 
vehicles (h) 

Dis- 
agree- 
ment 

(i) 

LIDAR 
(j) 

Loop 
detector 

(k) 

I-71 (SB): 
Free flow 07/09/2009 00:24 

1 168 156 156 12 0 168 n/a 156 9 0.0% 7.1% 21 
(12.5%) 

2 546 539 538 8 1 547 6 532 16 0.2% 1.5% 25 
(4.6%) 

3 644 653 638 6 15 659 132 506 13 2.3% 0.9% 34 
(5.2%) 

4 454 482 445 9 37 491 169 276 2 7.5% 1.8% 48 
(9.8%) 

I-71 (SB): 
Congestion 11/19/2009 00:28 

1 191 182 181 10 1 192 n/a 181 20 0.5% 5.2% 31 
(16.1%) 

2 859 848 848 11 0 859 18 830 12 0.0% 1.3% 23 
(2.7%) 

3 772 798 771 1 27 799 228 543 10 3.4% 0.1% 38 
(4.8%) 

4 797 912 795 2 117 914 343 452 0 12.8% 0.2% 119 
(13.0%) 

I-270 (SB): 
Free flow 11/02/2010 5:00 

1 5,415 5,452 5,389 26 63 5,478 n/a 5,389 184 1.2% 0.5% 273 
(5.0%) 

2 5,335 5,488 5,303 32 185 5,520 641 4,662 131 3.4% 0.6% 348 
(6.3%) 

3 2,647 2,789 2,615 32 174 2,821 713 1,902 28 6.2% 1.1% 234 
(8.3%) 

SR-33 (NB): 
Free flow 08/03/2011 1:10 

1 732 693 684 48 9 741 n/a 684 31 1.2% 6.5% 88 
(11.9%) 

2 569 562 547 22 15 584 65 482 7 2.6% 3.8% 44 
(7.5%) 

SR-33 (SB): 
Free flow 08/03/2011 1:10 

3 592 587 548 44 39 631 53 495 8 6.2% 7.0% 91 
(14.4%) 

4 888 884 838 50 46 934 148 690 69 4.9% 5.4% 165 
(17.7%) 

Overall 20,609 21,025 20,296 313 729 21,338 2,516 17,780 540 3.4% 1.5% 1,582 
(7.4%) 

n/a: occlusions are infeasible in this lane because it is adjacent to the LIDAR sensor 
 
(a) = (c + d) 
(b) = (c + e) 
(f) = (a + e) = (b + d) 
(h) = (c) – (g) 
(j) = (e) / (f) 
(k) = (d) / (f) 
(l) = (d + e + i), where the percentage is relative to (f) 
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Table 3-7, Manual verification using semi-automated tool of the vehicles with conflicting 
classifications or only seen by one sensor from the comparison of vehicle classification 
between LIDAR and loop detector data 

Loca- 
tion 

(direc- 
tion) 

Lane 
num- 
ber 

from 
LIDAR 

Number of 
vehicles 

not 
detected 

by LIDAR 
(e) 

Reason 
Number of 

vehicles 
not 

detected 
by loop 
detector 

(d) 

Reason 
Number 

of 
vehicles 

in 
disagree- 

ment 
(i) 

Verification of 
disagreement  

 
% loop 
detector 

miss- 
classified 

(r) 

 
 

% total 
loop 

detector 
error 
(s) 

Totally 
occluded 
vehicle 

LIDAR 
missed 
vehicle 

Loop 
detector 

non- 
vehicle 

actuation 
(m) 

Loop 
detector 
missed 
vehicle 

(n) 

LIDAR 
non- 

vehicle 
actuation 

LIDAR 
correct, 

loop 
incorrect 

(p) 

LIDAR 
incorrect, 

loop 
correct 

 

LIDAR 
incorrect 

loop 
incorrect 

(q) 

I-71 (SB): 
Free flow 

1 0 n/a 0 0 12 12 0 9 9 0 0 5.8% 12.5% 

2 1 1 0 0 8 8 0 16 15 1 0 2.8% 4.2% 

3 15 14 1 0 6 6 0 13 11 2 0 2.2% 2.6% 

4 37 32 5 0 9 9 0 2 2 0 0 0.7% 2.2% 

I-71 (SB): 
Congestion 

1 1 n/a 1 0 10 10 0 20 20 0 0 11.0% 15.6% 

2 0 0 0 0 11 11 0 12 12 0 0 1.4% 2.7% 

3 27 25 2 0 1 1 0 10 8 2 0 1.5% 1.1% 

4 117 104 13 0 2 2 0 0 0 0 0 0.0% 0.2% 

I-270 (SB): 
Free flow 

1 63 n/a 63 0 26 26 0 184 156 22 6 3.0% 3.4% 

2 185 116 69 0 32 32 0 131 112 15 4 2.5% 2.7% 

3 174 141 33 0 32 32 0 28 27 1 0 1.4% 2.1% 

SR-33 (NB): 
Free flow 

1 9 n/a 9 0 48 48 0 31 29 2 0 4.2% 10.4% 

2 15 8 7 0 22 22 0 7 6 1 0 1.2% 4.8% 

SR-33 (SB): 
Free flow 

3 39 27 12 0 44 44 0 8 8 0 0 1.6% 8.2% 

4 46 41 4 1 50 50 0 69 59 5 5 9.3% 12.3% 

Overall 729 510 218 1 313 313 0 540 474 51 15 2.8% 3.8% 

n/a: occlusions are infeasible in this lane because it is adjacent to the LIDAR sensor 
 

(p) = (m+n) / (h) 
(q) = (m+n+aa+bb)/(f-aa)  
 
Note (f) and (h) are shown in Table 3-6. 
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Table 3-8, Comparison of pseudo ground truth data and length-based vehicle classification across four 
directional locations 

Overall 
Length class from  

loop detector 
Number of  

LIDAR vehicles  
not detected 

 by loop detector 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data Class 1 Class 2 Class 3 

Pseudo  
ground  
truth 
data 

Passenger vehicle** 15,623 256 66 271 16,216 96% 0 

Single unit truck 125 590 8 26 749 79% 0 

Multiple unit truck* 21 23 1,286 16 1,346 96% 0 

Non-vehicle actuation  
in loop detector data 1 0 0 - 1 - - 

Column total above 15,770 869 1,360 313 18,312 - 0 

% correct 99% 68% 95% - - 96% - 

Totally occluded vehicles 498 7 5  - 510  - - 

Passenger vehicle** includes motorcycle, passenger vehicle, and passenger vehicle pulling a trailer. 
Multiple unit truck* includes single unit truck pulling a trailer and multiple unit truck. 

 
 

Table 3-9, Summary of evaluation of length-based vehicle classification station by a vehicle class. 

Location 
(traffic  

conditions) 

Dire- 
ction 

A number of vehicles 
from pseudo 

ground truth data 

% of pseudo ground 
truth vehicle  

classified correctly 

% of correct loop 
classification 

% of 
correct  

classification 
over all vehicles 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

I-71  
(free flow) SB 1,428 32 51 96% 50% 94% 99% 42% 84% 95% 

I-71  
(congestion) SB 1,967 38 40 97% 61% 98% 99% 47% 95% 97% 

I-270 
(free flow) SB 10,546 509 1,153 97% 92% 97% 99% 70% 95% 97% 

SR-33 
(free flow) 

NB 1,117 81 54 94% 69% 81% 98% 79% 96% 92% 

SB 1,158 89 48 92% 31% 73% 95% 60% 92% 87% 
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4 CONCLUSIONS 
This study examined LIDAR based vehicle classification and classification performance monitoring. First, 

we develop a portable LIDAR based vehicle classification system that can be rapidly deployed, and second we use 
the LIDAR based system to automate the manual validation of several existing classification station using the tools 
from the first part. Each component is discussed in a separate chapter, and the conclusions are presented at the end 
of each chapter. This section summarizes the conclusions from those chapters. 

In Chapter 2 we developed and tested a side-fire LIDAR based vehicle classification algorithm. The 
algorithm includes up to eight different measurements of vehicle shape to sort vehicles into six different classes. The 
algorithm was tested over seven datasets collected at various locations (including one development dataset). The 
results were compared against the concurrent video-recorded ground truth data on a per-vehicle basis. Overall, 2,938 
out of 27,450 vehicles (11%) are suspected of being partially occluded and these vehicles are classified separately. 
Occlusions are inevitable given the low vantage point of the sensors in this proof of concept study. In future research 
we will investigate higher views (comparable to typical microwave radar detector deployments) to mitigate the 
impact of occlusions. These higher views should also provide additional features, e.g., vehicle width. Unlike video, a 
vehicle's width and height are easily separable in the LIDAR ranging data. The algorithm correctly classifies 24,390 
of the 24,512 non-occluded vehicles (99.5%). While most side-fire detectors have challenges with occluded 
vehicles, the algorithms developed by this project are able to work around those problems. When a vehicle was 
partially occluded, we calculate the range of feasible length and height. These ranges are then used to assign one or 
more feasible vehicle classes to the given vehicle. Among these partially occluded vehicles, 47% were assigned a 
single class and 97% of these were correct. 

This work also uncovered an emerging challenge facing most vehicle classification technologies: 
separating commuter cars from motorcycles. The two groups have similar lengths, axle spacing and height, though 
they differ in width and likely in weight. With increased interest in classifying motorcycles correctly, combined with 
more commuter cars on the road, there is a need to devise a means to separate the two types of vehicles. 

Alternatively, recognizing the difficulty in distinguishing pairs of vehicle classes with the existing detector 
infrastructure (e.g., commuter cars and motorcycles, short SUT and PV), there may be a need to create buffer classes 
to impart greater confidence in the reported classifications, e.g., adding a new "class 3 or class 5" bin to the axle-
based decision tree that takes the upper portion of class 3 and lower portion of class 5 axle spacings. Thus confining 
the uncertainty to a much smaller number of vehicles and ensuring much greater confidence that anything that is 
classified as "strictly class 5" is indeed class 5. 

In Chapter 3 we tackle the labor demands required to evaluate the performance of existing classification 
stations. Vehicle classification data are critical to many transportation applications, but the quality of data collected 
depends on the operating agency to periodically calibrate, test, and validate the performance of classification 
sensors. These studies are labor intensive and coarse, allowing overcounting errors to cancel undercounting errors. 
To address these challenges, this study develops a classification performance monitoring system to allow operating 
agencies to automatically monitor the health of their classification stations. We eliminate most of the labor demands 
and instead, deploy a LIDAR based portable non-intrusive vehicle classification system (PNVCS) to classify 
vehicles, concurrent with existing classification stations. To prevent classification errors from canceling one another 
in aggregate, we record pvr data in the field from both systems. After the field collection the classification results are 
evaluated on a per-vehicle basis. If the two systems agree, the given vehicle is automatically taken as a success by 
the classification station. The PNVCS includes a video camera to allow a human to assess the discrepancies. A 
human only looks at a given vehicle when the two systems disagree, and we developed tools to semi-automate the 
manual validation process, greatly increasing the efficiency and accuracy of the human user. The datasets in this 
study take only a few minutes for the user to validate an hour of pvr data. Although we use a LIDAR based system, 
the tools at the heart of the methodology are transferable to many PNVCS such as the TIRTL or AxleLight. This 
pilot study used LIDAR sensors mounted on a van. This approach offers a distinct advantage over the other PNVCS 
since our system does not require any calibration in the field, in fact the van can be classifying vehicles as it pulls up 
to the site. For longer-term deployments we envision a dedicated trailer that could be parked alongside the road.  

The evaluation datasets come from several different classification stations, they include over 21,000 
vehicles. We separately evaluated length-based classification stations and axle-based classification stations, each 
yielding similar results. In each case about 8% of the vehicles required manual intervention. In this study the user 
typically spent 3-5 sec per vehicle reviewed (including seek time and loading time). The automated process does the 
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bulk of the work, in this study it typically took the human only a few minutes to process the exceptions from all 
lanes over one hour of data. 

The Chapter 3 evaluation also revealed a chronic problem detecting motorcycles at the two permanent 
classification stations studied. While the LIDAR system detected 15 passing motorcycles, the classification stations 
correctly classified one of them, and missed five altogether. 

As this research has shown, there is wide variance in performance from one station to the next and these 
errors tend to have a higher frequency among the truck classes, particularly the SUT. Since these errors are a 
function of the specific station, there would be benefit in the short term if a given operating agency were to leverage 
the system developed in this research to evaluate the performance of many other classification stations. Thereby 
catching systematic errors that bias classification performance at the given station. 
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6 APPENDIX A: DETAILS OF THE CLASSIFICATION STATIONS 
 

   

 
Figure A-1, Location of axle classification stations. 
 
 

 
 

 
Figure A-2, Location of tube classification sites. 
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Figure A-3, Schematic of locations LIDAR data collected: (a) I-71 southbound, (b) I-270 southbound, 

(c) SR-315 northbound, (d) SR-33 northbound and southbound, (e) Wilson Rd northbound 
and southbound, (f) Dublin Rd northbound and southbound 
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7 APPENDIX B: LIDAR BASED VEHICLE CLASSIFICATION BY LOCATION 
 

Table B-1, Comparison of LIDAR based vehicle classification and actual vehicle class from I-71 
southbound free flow. 

I-71 SB  
FF  

LIDAR vehicle classification Number of 
 vehicles 

from ground 
 truth data 

% correct 

Number of partially 
occluded vehicles that  

are excluded from 
LIDAR based vehicle 

classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
truth  
data 

MC 9 1 0 0 0 0 10 90.0% 1 

PV* 
PV 0 1,390 2 0 0 0 1,392 99.9% 297 

PVPT 0 1 14 0 0 0 15 93.3% 3 
SUT 0 0 1 33 0 2 36 91.7% 1 

MUT* 
SUPT 0 0 0 0 1 0 1 100% 0 
MUT 0 0 0 0 1 47 48 97.9% 9 

Number of vehicles 
from LIDAR vehicle 

 classification 
9 1,392 17 33 2 49 1,502 99.5% 311 

% correct 100% 99.9% 82.4% 100% 50% 95.9% 99.5%   
 

Table B-2, Comparison of LIDAR based vehicle classification and actual vehicle class from I-71 
southbound mild-congested. 

I-71 SB  
Mild-congested 

LIDAR vehicle classification Number of 
vehicles 

from ground 
 truth data 

% correct 

Number of partially 
 occluded vehicles that 

are excluded from 
 LIDAR based vehicle 

 classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
truth 
data 

MC 0 0 0 0 0 0 0 100% 0 

PV* 
PV 1 1,939 1 4 0 0 1,945 99.7% 568 

PVPT 0 0 9 0 0 0 9 100% 1 
SUT 0 1 0 34 0 0 35 97.1% 5 

MUT* 
SUPT 0 0 0 0 1 0 1 100% 0 
MUT 0 0 0 0 0 38 38 100% 17 

Number of vehicles  
from LIDAR vehicle 

 classification 
1 1,940 10 38 1 38 2,028 99.7% 591 

% correct 0% 99.9% 90.0% 89.5% 100% 100% 99.7%   
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Table B-3, Comparison of LIDAR based vehicle classification and actual vehicle class from I-270 
southbound free flow. 

I-270 SB  

LIDAR vehicle classification Number of 
vehicles  

from ground 
truth data 

% correct 

Number of partially 
occluded vehicles that 

are excluded from 
LIDAR based vehicle 

classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
truth 
data 

MC 3 2 0 0 0 0 5 60.0% 0 

PV* 
PV 6 10,205 2 11 0 0 10,224 99.8% 1,156 

PVPT 0 2 138 6 3 1 150 92.0% 20 
SUT 0 20 4 479 3 2 508 94.3% 49 

MUT* 
SUPT 0 0 4 1 21 5 31 67.7% 2 
MUT 0 0 3 7 5 1,088 1,103 98.6% 149 

Number of vehicles 
 from LIDAR vehicle 

 classification 
9 10,229 151 504 32 1,096 12,021 99.3% 1,376 

% correct 33.3% 99.8% 91.4% 95.0% 65.6% 99.3% 99.3%   
  
 

Table B-4, Comparison of LIDAR based vehicle classification and actual vehicle class from SR-315 
northbound free flow. 

SR-315 NB  

LIDAR vehicle classification Number of 
vehicles  

from ground 
truth data 

% correct 

Number of partially 
 occluded vehicles that 

are excluded from 
 LIDAR based vehicle 

 classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
truth 
data 

MC 24 1 0 0 0 0 25 96.0% 4 

PV* 
PV 3 6,085 0 0 0 0 6,088 100% 642 

PVPT 0 0 15 0 0 0 15 100% 4 
SUT 0 5 0 70 0 0 75 93.3% 7 

MUT* 
SUPT 0 0 0 0 2 0 2 100% 0 
MUT 0 0 0 1 0 34 35 97.1% 3 

Number of vehicles 
from LIDAR vehicle 

classification 
27 6,091 15 71 2 34 6,240 99.8% 660 

% correct 88.9% 99.9% 100% 98.6% 100% 100% 99.8%   
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Table B-5, Comparison of LIDAR based vehicle classification and actual vehicle class from Dublin Rd 
southbound. 

 Dublin Rd SB 

LIDAR vehicle classification Number of 
 vehicles 

from ground 
 truth data 

% correct 

Number of partially 
 occluded vehicles that 

are excluded from 
 LIDAR based vehicle 

 classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
 truth  
data 

MC 2 0 0 0 0 0 2 100% - 

PV* 
PV 0 1,258 0 0 0 0 1,258 100% - 

PVPT 0 0 19 0 0 0 19 100% - 

SUT 0 2 0 51 1 0 54 94.4% - 

MUT* 
SUPT 0 0 2 1 3 1 7 42.9% - 

MUT 0 0 0 0 0 4 4 100% - 

Number of vehicles  
from LIDAR vehicle 

 classification 
2 1,260 21 52 4 5 1,344 99.5% - 

% correct 100% 99.8% 90.5% 98.1% 75.0% 80.0% 99.5%   
 
 

Table B-6, Comparison of LIDAR based vehicle classification and actual vehicle class from Wilson 
Rd northbound. 

 Wilson Rd NB 

LIDAR vehicle classification Number of 
 vehicles 

from ground 
 truth data 

% correct 

Number of partially 
 occluded vehicles that 

are excluded from 
 LIDAR based vehicle 

 classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
 truth  
data 

MC 1 0 0 0 0 0 1 100% - 

PV* 
PV 0 599 0 0 0 0 599 100% - 

PVPT 0 0 5 0 0 0 5 100% - 
SUT 0 2 0 43 0 0 45 95.6% - 

MUT* 
SUPT 0 0 0 0 1 0 1 100% - 
MUT 0 0 0 0 0 15 15 100% - 

Number of vehicles  
from LIDAR vehicle 

 classification 
1 601 5 43 1 15 666 99.7% - 

% correct 100% 99.7% 100% 100% 100% 100% 99.7%   
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Table B-7, Comparison of LIDAR based vehicle classification and actual vehicle class from Wilson 
Rd southbound. 

 Wilson Rd SB 

LIDAR vehicle classification Number of 
vehicles 

from ground 
 truth data 

% correct 

Number of partially 
 occluded vehicles that 

are excluded from 
 LIDAR based vehicle 

 classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
 truth  
data 

MC 1 0 0 0 0 0 1 100% - 

PV* 
PV 0 676 0 0 0 0 676 100% - 

PVPT 0 0 6 0 0 0 6 100% - 
SUT 0 0 0 11 0 0 11 100% - 

MUT* 
SUPT 0 0 0 0 3 0 3 100% - 
MUT 0 0 0 1 0 13 14 92.9% - 

Number of vehicles  
from LIDAR vehicle 

 classification 
1 676 6 12 3 13 711 99.9% - 

% correct 100% 100% 100% 91.7% 100% 100% 99.9%   
 
 
 



 

C-1 

8 APPENDIX C: COMPARISON OF PSEUDO GROUND TRUTH DATA AND AXLE 
VEHICLE CLASSIFICATION BY LOCATION 

Throughout this appendix: PV* includes passenger vehicle and passenger vehicle pulling a trailer; and 
MUT* includes single unit truck pulling a trailer and multiple unit truck. 

 

Table C-1, Comparison of pseudo ground truth data and axle vehicle classification at I-270 southbound 
adjacent to LIDAR sensor. 

I-270 SB  
Axle vehicle classification Number of LIDAR 

 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 1 2 4 0 0 7 14% 0 

PV* 1 10,416 8 56 80 10,561 99% 0 

SUT 0 153 303 41 3 500 61% 0 

MUT* 0 28 4 1,101 7 1,140 97% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total above 2 10,599 319 1,198 90 12,208 -  0 

% correct 50% 98% 95% 92%  - -  97% - 

Totally occluded vehicles 1 252 2 2  - 257 -  - 
 

Table C-2, Comparison of pseudo ground truth data and axle vehicle classification at Dublin Rd 
southbound adjacent to LIDAR sensor. 

 Dublin Rd SB  
adjacent  

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 1 0 1 0 0 2 50% 0 

PV* 0 1,183 28 41 30 1,282 92% 0 

SUT 0 6 46 0 1 53 87% 0 

MUT* 0 0 0 11 0 11 100% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total 1 1,189 75 52 31 1,348 -  0 

% correct 100% 99% 61% 21%  - -  92% - 

Totally occluded vehicles 0 0 0 0  - 0 -  - 
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Table C-3, Comparison of pseudo ground truth data and axle vehicle classification at Wilson Rd 
northbound adjacent to LIDAR sensor. 

Wilson Rd NB 
adjacent  

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 1 0 0 0 0 1 100% 0 

PV* 0 583 10 11 8 612 95% 0 

SUT 0 1 42 0 0 43 98% 0 

MUT* 0 0 0 16 0 16 100% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total above 1 584 52 27 8 672 -  0 

% correct 100% 100% 81% 59%  -  - 96% - 

Totally occluded vehicles 0 0 0 0  - 0 -  - 
 
 

Table C-4, Comparison of pseudo ground truth data and axle vehicle classification at Wilson Rd 
southbound adjacent to LIDAR sensor. 

Wilson Rd SB 
adjacent  

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 1 0 0 0 0 1 100% 0 

PV* 0 666 6 11 10 693 96% 0 

SUT 0 1 10 0 0 11 91% 0 

MUT* 0 0 0 17 0 17 100% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total above 1 667 16 28 10 722  - 0 

% correct 100% 100% 63% 61%  -  - 96% - 

Totally occluded vehicles 0 0 0 0  -	   0	    -	   -	  
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Table C-5, Comparison of pseudo ground truth data and axle vehicle classification at SR-33 
northbound adjacent to LIDAR sensor. 

 
 

Table C-6, Comparison of pseudo ground truth data and axle vehicle classification at Dublin Rd 
northbound on the opposite side of LIDAR sensor. 

 Dublin NB 
opposite 

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 1 0 0 1 0 2 50% 0 

PV* 1 748 21 18 7 795 94% 0 

SUT 1 5 55 2 0 63 87% 0 

MUT* 0 0 0 6	   0 6 100% 0 
Non-vehicle  

actuation in axle data 2 2 0 0  - 4  - - 

Column total above 5 755 76 27 7 870  - 0 

% correct 20% 99% 72% 22%  -  - 93% - 

Totally occluded vehicles 0 5 0 0  - 5  - - 
 

SR-33 NB 
adjacent  

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 0 0 0 2 3 5 0% 0 

PV* 0 1,057 2 2 53 1,114 95% 0 

SUT 0 12 44 15 8 79 56% 0 

MUT* 0 0 1 47 6 54 87% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total above 0 1,069 47 66 70 1,252  - 0 

% correct - 99% 94% 71% -   - 92% - 

Totally occluded vehicles 0 8 0 0  - 8  - - 
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Table C-7, Comparison of pseudo ground truth data and axle vehicle classification at Wilson Rd 
northbound on the opposite side of LIDAR sensor. 

Wilson NB 
opposite  

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 0 0 0 0 0 0 - 0 

PV* 0 647 7	   7 7 668 97% 0 

SUT 0 1 16 0 0 17 94% 0 

MUT* 0 0 0 11 0 11 100% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total above 0 648 23 18 7 696 -  0 

% correct - 100% 70% 61%  -  -	   97% - 

Totally occluded vehicles 0 5 0 0  - 5 -  - 
 
 

Table C-8, Comparison of pseudo ground truth data and axle vehicle classification at Wilson Rd 
southbound on the opposite side of LIDAR sensor. 

 Wilson SB 
opposite 

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 1 0 0 0	   0 1 100% 0 

PV* 0 628 9 12 18 667 94% 0 

SUT 0 2 16 0 0 18 89% 0 

MUT* 0 0 0 10 0 10 100% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total above 1 630 25 22 18 696  - 0 

% correct 100% 100% 64% 45%  - -  94% - 

Totally occluded vehicles 0 10 0 0  - 10  - - 
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Table C-9, Comparison of pseudo ground truth data and axle vehicle classification at SR-33 
southbound on the opposite side of LIDAR sensor. 

 SR-33 SB 
opposite 

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 0 0 1 0 2 3 0% 0 

PV* 0 1,073 3 2 76 1,154 93% 0 

SUT 0 15 42 21 13 91 46% 0 

MUT* 1 2 4 37 3 47 79% 0 
Non-vehicle  

actuation in axle data 0 1 0 0  - 1 -  - 

Column total above 1 1,091 50 60 94 1,296 -  0 

% correct 0% 98% 84% 62%  -  - 89% - 

Totally occluded vehicles 0 65 2 1  - 68 -  - 
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9 APPENDIX D: COMPARISON OF PSEUDO GROUND TRUTH DATA AND LENGTH 
BASED VEHICLE CLASSIFICATION BY LOCATION 

Throughout this appendix: PV** includes motorcycle, passenger vehicle, and passenger vehicle pulling a 
trailer; and MUT* includes single unit truck pulling a trailer and multiple unit truck. 

 

Table D-1, Comparison of pseudo ground truth data and length based vehicle classification from I-71 
southbound free flow. 

I-71 SB 
Free flow 

Length class from  
loop detector 

Number of  
LIDAR vehicles  

not detected 
 by loop detector 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data Class 1 Class 2 Class 3 

Pseudo  
ground  

truth data 

PV** 1,372 19 4 33 1,428 96% 0 

SUT 9 16 5 2 32 50% 0 

MUT* 0 3 48 0 51 94% 0 

Non-vehicle actuation  
in loop detector data 0 0 0 - 0 - - 

Column total above 1,381 38 57 35 1,511 - 0 

% correct 99% 42% 84% - - 95% - 

Totally occluded vehicles 46 0 1 -	   47 - - 

 
 

Table D-2, Comparison of pseudo ground truth data and length based vehicle classification from I-71 
southbound semi-congested. 

I-71 SB 
Semi-congested	  

Length class from  
loop detector 

Number of  
LIDAR vehicles  

not detected 
 by loop detector 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data Class 1 Class 2 Class 3 

Pseudo  
ground  

truth data 

PV** 1,917 25 1 24 1,967 97% 0 

SUT 14 23 1 0 38 61% 0 

MUT* 0 1 39 0 40 98% 0 

Non-vehicle actuation  
in loop detector data 0 0 0 - 0 - - 

Column total above 1,931 49 41 24 2,045 - 0 

% correct 99% 47% 95% - - 97% - 

Totally occluded vehicles 130 0 0 - 130 - - 
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Table D-3, Comparison of pseudo ground truth data and length based vehicle classification from I-270 
southbound. 

I-270 SB 

Length class from  
loop detector 

Number of  
LIDAR vehicles  

not detected 
 by loop detector 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data Class 1 Class 2 Class 3 

Pseudo  
ground  

truth data 

PV** 10,221 189 56 80 10,546 97% 0 

SUT 37 467 2 3 509 92% 0 

MUT* 18 8 1,120 7 1,153 97% 0 

Non-vehicle actuation  
in loop detector data 0 0 0 - 0 - - 

Column total above 10,276 664 1,178 90 12,208 - 0 

% correct 99% 70% 95% - - 97% - 

Totally occluded vehicles 249 5 3  - 257  - - 

 
 

Table D-4, Comparison of pseudo ground truth data and length based vehicle classification from SR-
33 northbound. 

SR-33 NB 

Length class from  
loop detector 

Number of  
LIDAR vehicles  

not detected 
 by loop detector 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data Class 1 Class 2 Class 3 

Pseudo  
ground  

truth data 

PV** 1,047 12 2 56 1,117 94% 0 

SUT 17 56 0 8 81 69% 0 

MUT* 1 3 44 6 54 81% 0 

Non-vehicle actuation  
in loop detector data 0 0 0  - 0 - - 

Column total above 1,065 71 46 70 1,252 - 0 

% correct 98% 79% 96% - - 92% - 

Totally occluded vehicles 8 0 0  - 8  - - 
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Table D-5, Comparison of pseudo ground truth data and length based vehicle classification from SR-
33 southbound. 

SR-33 SB 

Length class from  
loop detector 

Number of  
LIDAR vehicles  

not detected 
 by loop detector 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data Class 1 Class 2 Class 3 

Pseudo  
ground  

truth data 

PV** 1,066 11 3 78 1,158 92% 0 

SUT 48 28 0 13 89 31% 0 

MUT* 2 8 35 3 48 73% 0 

Non-vehicle actuation  
in loop detector data 1 0 0 - 1 - - 

Column total above 1,117 47 38 94 1,296 - 0 

% correct 95% 60% 92% - - 87% - 

Totally occluded vehicles 65 2 1 - 68  - - 
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